245
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Influence of particle size on the exit effect of a full-scale rolling circulating fluidized bed

, , , &

References

  • Bai, D.-R., Y. Jin, Z.-Q. Yu, and J.-X. Zhu. 1992. The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds. Powder Technology 71 (1):51–58. doi:10.1016/0032-5910(92)88003-z.
  • Bi, H. T. 2005. Electrostatic phenomena in gas-solids fluidized beds. China Particuology 3 (06):395–99. doi:10.1016/s1672-2515(07)60220-6
  • Castilho, G. J., and M. A. Cremasco. 2009. Experimental study in a short circulating fluidized bed riser. Particulate Science and Technology 27 (3):210–21. doi:10.1080/02726350902921715.
  • Chu, K. W., B. Wang, A. B. Yu, and A. Vince (2009). CFD-DEM Modelling of Multiphase Flow in Dense Medium Cyclones. Powder Technology. 193(3): 235–47. Amsterdam, Netherlands: Elsevier. doi:10.1016/j.powtec.2009.03.015.
  • Cundall, P. A., and O. D. L. Strack. 1979. A discrete numerical model for granular assemblies. Geotechnique 29 (1):47–65. doi:10.1680/geot.1979.29.1.47
  • Ergun, S. 1952. Fluid flow through packed columns. Chemical Engineering Progress 48:89–94.
  • Hassani, M. A., R. Zarghami, H. R. Norouzi, and N. Mostoufi. 2013. Numerical investigation of effect of electrostatic forces on the hydrodynamics of gas–solid fluidized beds. Powder Technology 246:16–25. doi:10.1016/j.powtec.2013.05.007.
  • Karimi, S., Z. Mansourpour, N. Mostoufi, and R. Sotudeh-Gharebagh. 2011. CFD-DEM study of temperature and concentration distribution in a polyethylene fluidized bed reactor. Particulate Science and Technology 29 (2):163–78. doi:10.1080/02726351003758451.
  • Murata, H., H. Oka, M. Adachi, and K. Harumi. 2012. Effects of the ship motion on gas–solid flow and heat transfer in a circulating fluidized bed. Powder Technology 231:7–17. doi:10.1016/j.powtec.2012.06.060.
  • Pärssinen, J. H., and J.-X. Zhu. 2001. Particle velocity and flow development in a long and high-flux circulating fluidized bed riser. Chemical Engineering Science 56 (18):5295–5303. doi:10.1016/s0009-2509(01)00200-7.
  • Wen, C. Y., and Y. H. Yu. 2013. Mechanics of fluidization. Chemical Engineering Progress Symposium Series 62:100.
  • Xu, B. H., and A. B. Yu. 1997. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chemical Engineering Science 52 (16):2785–2809. doi:10.1016/s0009-2509(97)00081-x.
  • Zhang, M. H., K. W. Chu, F. Wei, and A. B. Yu. 2008. A CFD–DEM study of the cluster behavior in riser and downer reactors. Powder Technology 184 (2):151–65. doi:10.1016/j.powtec.2007.11.036.
  • Zhang, R., H. Yang, Y. Wu, H. Zhang, and J. Lu. 2013. Experimental study of exit effect on gas–solid flow and heat transfer inside CFB risers. Experimental Thermal and Fluid Science 51:291–96. doi:10.1016/j.expthermflusci.2013.08.011.
  • Zhao, T., K. Liu, Y. Cui, and M. Takei. 2010. Three-dimensional simulation of the particle distribution in a downer using CFD–DEM and comparison with the results of ECT experiments. Advanced Powder Technology 21 (6):630–40. doi:10.1016/j.apt.2010.06.009.
  • Zhao, T., K. Liu, H. Murata, K. Harumi, and M. Takei. 2014. Experimental and numerical investigation of particle distribution behaviors in a rolling circulating fluidized bed. Powder Technology 258:38–48. doi:10.1016/j.powtec.2014.03.023.
  • Zhao, T., Y. Nakamura, K. Liu, H. Murata, and M. Takei. 2016. The effect of rolling amplitude and period on particle distribution behavior in a rolling circulating fluidized bed. Powder Technology 294:484–92. doi:10.1016/j.powtec.2016.03.018.
  • Zheng, Q., and H. Zhang. 1994. Experimental study of the effect of bed exits with different geometric structure on internal recycling of bed material in CFB boilers. In Circulating fluidized bed technology IV, ed. A. A. Avidan. 145–51. USA: Publisher of this proceeding is Mobil Research and Development Corporation, Paulsboro Research Laboratory.
  • Zhilong, W., Z. Tong, L. Kai, and T. Masahiro. 2014. Euler-Lagrange simulation of fine particle discharge rate under accelerated air ventilation circumstances. Japanese Society for Multiphase Flow 28 (3):355–65. doi:10.3811/jjmf.28.355.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.