305
Views
23
CrossRef citations to date
0
Altmetric
ARTICLES

The effect of humic acid on the stability and aggregation kinetics of WO3 nanoparticles

, &

References

  • Abazari, R., and S. Sanati. 2013. Room temperature synthesis of tungsten (VI) tri-oxide nanoparticles with one-pot multi-component reaction in emulsion nanoreactors stabilized by aerosol-OT. Materials Letters 107:329–32. doi:10.1016/j.matlet.2013.06.045
  • Anik, M. 2006. Effect of concentration gradient on the anodic behavior of tungsten. Corrosion Science 48:4158–4173.
  • Anik, M. 2009. pH-dependent anodic reaction behavior of tungsten in acidic phosphate solutions. Electrochimica Acta 54 (15):3943–51. doi:10.1016/j.electacta.2009.02.014
  • Anik, M., and T. Cansizoglu. 2006. Dissolution kinetics of WO3 in acidic solutions. Journal of Applied Electrochemistry 36:603–08. doi:10.1007/s10800-006-9113-3
  • Baalousha, M. 2009. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of the Total Environment 407 (6):2093–101. doi:10.1016/j.scitotenv.2008.11.022
  • Baserga, A., V. Russo, F. Di Fonzo, A. Bailini, D. Cattaneo, C. S. Casari, A. Li Bassi, and C. E. Bottani. 2007. Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization. Thin Solid Films 515:6465–69. doi:10.1016/j.tsf.2006.11.067
  • Belen, M., M. M. Fidalgo, and D. Cortalezzi. 2013. An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions. Water Research 47 (12):3887–98. doi:10.1016/j.watres.2012.11.061
  • Bian, S. W., I. A. Mudunkotuwa, T. Rupasinghe, and V. H. Grassian. 2011. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27 (10):6059–68. doi:10.1021/la200570n
  • Brunetti, G., E. Donner, G. Laera, K. Sekine, K. G. Scheckel, M. Khaksar, K. Vasilev, G. De Mastro, and E. Lomb. 2015. Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Research 77:72–84. doi:10.1016/j.watres.2015.03.003
  • Chauque, E. F. C., J. N. Zvimba, J. C. Ngila, and N. Musee. 2014. Stability studies on commercial ZnO engineered nanoparticles in domestic wastewater. Physics and Chemistry of the Earth 67–69:140–44. doi:10.1016/j.pce.2013.09.011
  • Chekli, L., Y. X. Zhao, L. D. Tijing, S. Phutsho, E. Donner, E. Lombi, B. Y. Gao, and H. K. Shon. 2014. Aggregation behaviour of engineered nanoparticles in natural waters: Characterising aggregate structure using on-line laser light scattering. Journal of Hazardous Materials 284:190–200. doi:10.1016/j.jhazmat.2014.11.003
  • Clark, A. N., H. J. Lunacek, and B. G. Benedek. 1970. A study of Brownian motion using light scattering. American Journal of Physics 38:575–85. doi:10.1119/1.1976408
  • Daniel, M. F., B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz. 1987. Infrared and Raman study of WO3 tungsten trioxides and WO3 × H2O tungsten trioxide tydrates. Journal of Solid State Chemistry 67 (2):235–47. doi:10.1016/0022-4596(87)90359-8
  • de Melo, B. A. G., F. L. Motta, and M. H. A. Santana. 2015. Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering C 62:967–74. doi:10.1016/j.msec.2015.12.001
  • Di Valentin, C., F. Wang, and G. Pacchioni. 2013. Tungsten oxide in catalysis and photocatalysis: Hints from DFT. Topics in Catalysis 56 (15–17):1404–19. doi:10.1007/s11244-013-0147-6
  • Fenglin, L., X. Chen, Q. Xia, L. Tian, and X. Chen. 2015. Ultrathin tungsten oxide nanowires: Oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Advance 5:77423–28. doi:10.1039/c5ra12993a
  • French, R. A., A. R. Jacobson, B. Kim, S. L. Isley, L. Penn, and P. C. Baveye. 2009. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science and Technology 43 (5):1354–59. doi:10.1021/es802628n
  • Ghosh, S., S. Acharyya, K. Kumar, and R. Bal. 2015. One-pot preparation of nanocrystalline Ag-WO3 catalyst for the selective oxidation of styrene. RSC Advance 5:37610–16. doi:10.1039/c5ra03803k
  • Gotić, M., M. Ivanda, S. Popovic, and S. Musić. 2000. Synthesis of tungsten trioxide hydrates and their structural properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 77 (2):193–201. doi:10.1016/s0921-5107(00)00488-8
  • Huang, J., X. Xu, C. Gu, M. Yang, M. Yang, and J. Liu. 2011. Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. Journal of Materials Chemistry 21 (35):13283–89. doi:10.1039/c1jm11292a
  • Jiang, J., P. Biswas, and G. Oberdorster. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research 11:77–89. doi:10.1007/s11051-008-9446-4
  • Kumari, N., and P. N. Pathak. 2014. Dynamic light scattering studies on the aggregation behavior of tributyl phosphate and straight chain dialkyl amides during thorium extraction. Journal of Industrial and Engineering Chemistry 20 (4):1382–87. doi:10.1016/j.jiec.2013.07.022
  • Li, Y., C. Yang, X. Guo, Z. Dang, X. Li, and Q. Zhang. 2015. Effects of humic acids on the aggregation and sorption of nano-TiO2. Chemosphere 119:171–76. doi:10.1016/j.chemosphere.2014.05.002
  • Lin, D., N. Liu, K. Yang, L. Zhu, Y. Xu, and B. Xing. 2009. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon 47:2875–82. doi:10.1016/j.carbon.2009.06.036
  • Liu, H., T. Peng, D. Ke, Z. Peng, and C. Yan. 2007. Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Materials Chemistry and Physics 104 (2–3):377–83. doi:10.1016/j.matchemphys.2007.03.028
  • Luévano-hipólito, E., A. M. Cruz, Q. L. Yu, and H. J. H. Brouwer. 2014. Precipitation synthesis of WO3 for NOx removal using PEG as template. Ceramics International 40:12123–28. doi:10.1016/j.ceramint.2014.04.052
  • Mahlalela, L. C., J. C. Ngila, and L. N. Dlamini. 2016. Characterization and stability of TiO2 nanoparticles in industrial dye stuff effluent. Journal of Dispersion Science and Technology 38:583–94. doi:10.1080/01932691.2016.1183501
  • Marei, N. N., N. N. Nassar, and G. Vitale. 2016. The effect of the nanosize on surface properties of NiO nanoparticles for the adsorption of Quinolin-65. Physical Chemistry Chemical Physics 18 (9):6839–49. doi:10.1039/c6cp00001k
  • Martin, C., I. Martin, V. Rives, G. Solana, V. Loddo, L. Palmisano, and A. Sclafani. 1997. Physicochemical characterization of WO3/ZrO2 and WO3/Nb2O5 catalysts and their photoactivity for 4-nitrophenol photooxidation in aqueous dispersion. Journal of Materials Science 32:6039–47.
  • Monshi, A., M. R. Foroughi, and M. R. Monshi. 2012. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering 2:154–60. doi:10.4236/wjnse.2012.23020
  • Mu, W., X. Xie, X. Li, R. Zhang, Q. Yu, K. Lu, H. Wei, and Y. Jian. 2015. Solid-state synthesis of hexagonal tungsten trioxide nanorods. Materials Letters 138:107–09. doi:10.1016/j.matlet.2014.09.113
  • Nogueira, H. I. S., A. M. V. Cavaleiro, and T. Trindade. 2004. Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. Materials Research Bulletin 39:683–93. doi:10.1016/j.materresbull.2003.11.004
  • Pakrashi, S., S. Dalai, B. Sneha, N. Chandrasekaran, and A. Mukherjee. 2012. A temporal study on fate of Al2O3 nanoparticles in a fresh water microcosm at environmentally relevant low concentrations. Ecotoxicology and Environmental Safety 84:70–77. doi:10.1016/j.ecoenv.2012.06.015
  • Pang, H. F., X. Xiang, Z. J. Li, Y. Q. Fu, and X. T. Zu. 2012. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Physica Status Solidi (a) 209 (3):537–44. doi:10.1002/pssa.201127456
  • Romanello, M. B., and M. M. Fidalgo de Cortalezzi. 2013. An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions. Water Research 47 (12):3887–98. doi:10.1016/j.watres.2012.11.061
  • Sayed Abhudhahir, M. H., and J. Kandasamy. 2015. Synthesis and characterization of manganese doped tungsten oxide by microwave irradiation method. Materials Science in Semiconductor Processing 40:695–700. doi:10.1016/j.mssp.2015.07.031
  • Shah, M., and N. Muzyyan. 2009. A novel approach for the synthesis of tungsten trioxide nanostructures. Journal of King Abdulaziz University-Science 21 (1):109–15. doi:10.4197/sci.21-1.11
  • Sing, K. S. W. 1982. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 54 (11):2201–18. doi:10.1351/pac198254112201
  • Stumm, W., and J. J. Morgan. 2013. Environmental science and technology : A wiley-interscience series of texts and monographs : Aquatic chemistry : Chemical equilibria and rates in natural waters, 3rd ed. Somerset, NJ, USA: John Wiley & Sons.
  • Susanti, D., N. Stefanus Haryo, H. Nisfu, E. P. Nugroho, H. Purwaningsih, G. E. Kusuma, and S. J. Shih. 2012. Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment. Frontiers of Chemical Science and Engineering 6 (4):371–80. doi:10.1007/s11705-012-1215-3
  • Vamvasakis, I., I. Georgaki, D. Vernardou, G. Kenanaki, and N. Katsarakis. 2015. Synthesis of WO3 catalytic powders: Evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. Journal of Sol-Gel Science and Technology 76 (1):120–28. doi:10.1007/s10971-015-3758-5
  • Vijayakumar, P., M. S. Pandian, S. Mukhopadhyay, and P. Ramasamy. 2015. Synthesis and characterizations of large surface tungsten oxide nanoparticles as a novel counter electrode for dye-sensitized solar cell. Journal of Sol-Gel Science and Technology 75 (3):487–94. doi:10.1007/s10971-015-3719-z
  • Wall, N. A., and G. R. Choppin. 2003. Humic acids coagulation: Influence of divalent cations. Applied Geochemistry 18 (10):1573–82. doi:10.1016/s0883-2927(03)00046-5
  • Weinberg, H., A. Galyean, and M. Leopold. 2011. Evaluating engineered nanoparticles in natural waters. TrAC - Trends in Analytical Chemistry 30 (1):72–83. doi:10.1016/j.trac.2010.09.006
  • Wicaksana, Y., S. Liu, J. Scott, and R. Amal. 2014. Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal. Molecules 19 (11):17747–62. doi:10.3390/molecules191117747
  • Wu, L., J. Bi, X. Li, and X. Fu. 2008. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catalysis Today 131 (1–4):15–20. doi:10.1016/j.cattod.2007.10.089
  • Yang, Q. L., S. Z. Kang, H. Chen, W. Bu, and J. Mu. 2011. La2Ti2O7: An efficient and stable photocatalyst for the photoreduction of Cr(VI) ions in water. Desalination 266 (1–3):149–53. doi:10.1016/j.desal.2010.08.018
  • Zhang, L. J., S. Li, B. K. Liu, D. J. Wang, and T. F. Xie. 2014. Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catalysis 4 (10):3724–29. doi:10.1021/cs500794j
  • Zhang, Y., Y. Chen, P. Westerhoff, and J. Crittenden. 2009. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research 43 (17):4249–57. doi:10.1016/j.watres.2009.06.005
  • Zhu, M., H. Wang, A. A. Keller, T. Wang, and F. Li. 2014a. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Science of the Total Environment 487 (1):375–80. doi:10.1016/j.scitotenv.2014.04.036
  • Zhu, X., H. Chen, W. Li, Y. He, P. C. Brookes, and J. Xu. 2014b. Aggregation kinetics of natural soil nanoparticles in different electrolytes. European Journal of Soil Science 65 (2):206–17. doi:10.1111/ejss.12118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.