509
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

CFD-DEM combined the fictitious domain method with monte carlo method for studying particle sediment in fluid

ORCID Icon, &

References

  • Alapati, S., W. S. Che, and Y. K. Suh. 2015. Simulation of sedimentation of a sphere in a viscous fluid using the lattice Boltzmann method combined with the smoothed profile method. Advances in Mechanical Engineering 7 (2):794198. doi:10.1155/2014/794198
  • Anderson, T. B., and R. O. Y. Jackson. 1967. A fluid mechanical description of fluidized beds. Industrial & Engineering Chemistry Fundamentals 6 (4):527–39. doi:10.1021/i160024a007
  • Apostolou, K., and A. N. Hrymak. 2008. Discrete element simulation of liquid-particle flows. Computers and Chemical Engineering 32 (4–5):841–56. doi:10.1016/j.compchemeng.2007.03.018
  • Ardekani, A. M., S. Dabiri, and R. H. Rangel. 2008. Collision of multi-particle and general shape objects in a viscous fluid. Journal of Computational Physics 227 (24):10094–107. doi:10.1016/j.jcp.2008.08.014
  • Ardekani, A. M., and R. H. Rangel. 2008. Numerical investigation of particle–particle and particle–wall collisions in a viscous fluid. Journal of Fluid Mechanics 596:437–66. doi:10.1017/S0022112007009688
  • Ardekani, M. N., P. Costa, W. P. Breugem, and L. Brandt. 2016. Numerical study of the sedimentation of spheroidal particles. International Journal of Multiphase Flow 87:16–34. doi:10.1016/j.ijmultiphaseflow.2016.08.005
  • Balachandar, S., and J. K. Eaton. 2010. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics 42 (1):111–33. doi:10.1146/annurev.fluid.010908.165243
  • Barnocky, G., and R. H. Davis. 1989. The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres. Journal of Fluid Mechanics 209:501. doi:10.1017/S0022112089003198
  • Benyahia, S., M. Syamlal, and T. J. O’Brien. 2005. Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Technology 156:62–72. doi:10.1016/j.powtec.2005.04.002
  • Bishop, R. F. 1975. Thermo-fluid dynamic theory of two-phase flow. Physics Bulletin 26 (12):544–44. doi:10.1088/0031-9112/26/12/034
  • Cundall, P. A., and O. D. L. Strack. 1979. A discrete numerical model for granular assemblies. Géotechnique 29 (1):47–65. doi:10.1680/geot.1979.29.1.47
  • Davis, R. H., D. A. Rager, and B. T. Good. 2002. Elastohydrodynamic rebound of spheres from coated surfaces. Journal of Fluid Mechanics 468:107–19. doi:10.1017/S0022112002001489
  • Davis, R. H., J.-M. Serayssol, and E. J. Hinch. 1986. The elastohydrodynamic collision of 2 spheres. Journal of Fluid Mechanics 163:479–97. doi:10.1017/S0022112086002392
  • Di Renzo A., and F. P. Di Maio. 2005. An improved integral non-linear model for the contact of particles in distinct element simulations. Chemical Engineering Science 60:1303–12. doi:10.1016/j.ces.2004.10.004
  • Diaz-Goano, C., P. D. Minev, and K. Nandakumar. 2003. A fictitious domain/finite element method for particulate flows. Journal of Computational Physics 192 (1):105–23. doi:10.1016/S0021-9991(03)00349-8
  • Eames, I., and S. Dalziel. 2000. Dust resuspension by the flow around an impacting sphere. Journal of Fluid Mechanics 403:305–28. doi:10.1017/S0022112099007120
  • Enwald, H., E. Peirano, and A. E. Almstedt. 1996. Eulerian two-phase flow theory applied to fluidization. International Journal of Multiphase Flow 22 (1975):21–66. doi:10.1016/S0301-9322(96)90004-X
  • Feng, Z. G., and E. E. Michaelides. 2005. Proteus: A direct forcing method in the simulations of particulate flows. Journal of Computational Physics 202 (1):20–51. doi:10.1016/j.jcp.2004.06.020
  • Feng, Z.-G., E. E. Michaelides, and S. Mao. 2010. A three-dimensional resolved discrete particle method for studying particle-wall collision in a viscous fluid. Journal of Fluids Engineering 132 (9):91302. doi:10.1115/1.4002432
  • Foerster, S., A. Khandpur, and J. Zhao. 1994. Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order-disorder transition. Macromolecules 27:6922–6935. doi:10.1021/ma00101a033
  • Gidaspow, D. 1994. Multiphase flow and fluidization. https://doi.org/10.1016/B978-0-08-051226-6.50014-5
  • Glowinski, R., T. W. W. Pan, T. I. I. Hesla, D. D. D. Joseph, and J. Périaux. 2001. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. Journal of Computational Physics 169 (2):363–426. doi:10.1006/jcph.2000.6542
  • Gondret, P., E. Hallouin, M. Lance, and L. Petit. 1999. Experiments on the motion of a solid sphere toward a wall: From viscous dissipation to elastohydrodynamic bouncing. Physics of Fluids 11 (9):2803–2805. doi:10.1063/1.870109
  • Gondret, P., M. Lance, and L. Petit. 2002. Bouncing motion of spherical particles in fluids. Physics of Fluids 14 (2):643–652. doi:10.1063/1.1427920
  • Goniva, C., C. Kloss, N. G. Deen, J. A. M. Kuipers, and S. Pirker. 2012. Influence of rolling friction on single spout fluidized bed simulation. Particuology 10 (5):582–591. doi:10.1016/j.partic.2012.05.002
  • Goniva, C., C. Kloss, A. Hager, and S. Pirker. 2010. An open source CFD-DEM perspective. In Proceedings of OpenFOAM Workshop, 1–10. Retrieved from ftp://ftp.heanet.ie/disk1/sourceforge/o/op/openfoam-extend/OpenFOAM_Workshops/OFW5_2010_Gothenburg/Papers/ChristophGonivaPaperOFWS5.pdf
  • Hager, A., C. Kloss, S. Pirker, and C. Goniva. 2012. Parallel open source CFD-DEM for resolved particle-fluid interaction. In Proceedings of 9th International Conference on Computational Fluid Dynamics in Minerals and Process Industries, Melbourne, Australia. 7 (December), 1–6.
  • Hager, A., C. Kloss, S. Pirker, and C. Goniva. 2014. Parallel Resolved Open Source CFD-DEM: Method, Validation and Application. Journal of Computational Multiphase Flows 6 (1):13–27.
  • Höhner, D., S. Wirtz, H. Kruggel-Emden, and V. Scherer. 2011. Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: Influence on temporal force evolution for multiple contacts. Powder Technology 208 (3):643–656. doi:10.1016/j.powtec.2011.01.003
  • Hoomans, B. P. B., J. A. M. Kuipers, W. J. Briels, and W. P. M. van Swaaij. 1996. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. Chemical Engineering Science 51 (1):99–118. doi:10.1016/0009-2509(95)00271-5
  • Iaccarino, G., and R. Verzicco. 2003. Immersed boundary technique for turbulent flow simulations. Applied Mechanics Reviews 56 (3):331. doi:10.1115/1.1563627
  • Jackson, R. 1997. Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chemical Engineering Science 52 (15):2457–2469. doi:10.1016/S0009-2509(97)00065-1
  • Joseph, G. 2003. Collisional dynamics of macroscopic particles in a viscous fluid. California Institute of Technology. PhD Thesis, 119.
  • Joseph, G., R. Zenit, M. Hunt, and A. M. Rosenwinkel. 2001. Particle-wall collisions in a viscous fluid. Journal of Fluid Mechanics 433 (433):329–346. doi:10.1017/S0022112001003470
  • Joseph, G. and M. Hunt. 2004. Oblique particle wall collisions in a liquid. Journal of Fluid Mechanics 510 (510):71–93. doi:10.1017/S002211200400919X
  • Kempe, T., and J. Fröhlich. 2012. Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. Journal of Fluid Mechanics 709:445–489. doi:10.1017/jfm.2012.343
  • Kloss, C., C. Goniva, A. Hager, S. Amberger and S. Pirker. 2012. Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics. 12 (12):140–152. doi: 10.1504/PCFD.2012.047457
  • Kroese, D., T. Brereton, T. Taimre, and I. Zdravko. 2014. Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics 6 (6):386–392. doi:10.1002/wics.1314
  • Kruggel-Emden, H., E. Simsek, S. Rickelt, S. Wirtz, and V. Scherer. 2007. Review and extension of normal force models for the discrete element method. Powder Technology 171 (3):157–173. doi:10.1016/j.powtec.2006.10.004
  • Ladd, A. J. C. 1997. Sedimentation of homogeneous suspensions of non-Brownian spheres. Physics of Fluids 9 (3):491. doi:10.1063/1.869212
  • Leweke, T., and C. Marseille. 2004. Touchdown of a sphere. Physics of Fluids 16 (9):6631. doi:10.1063/1.1763919
  • Leweke, T., M. C. Thompson, and K. Hourigan. 2004. Vortex dynamics associated with the collision of a sphere with a wall. Physics of Fluids 16 (9):L74–77. doi:10.1063/1.1773854
  • Li, J. 2000. Compromise and resolution: Exploring the multi-scale nature of gas-solid fluidization. Powder Technology 111 (1–2):50–59. doi:10.1016/S0032-5910(00)00238-2
  • Mammoli, A. A., and C. A. Brebbia. 2007. Computational methods in multiphase flow IV, 417. WIT Transactions on Engineering Sciences. Ashurst Lodge, Ashurst, Southampton SO40 7AA, UK. 416.
  • McLaughlin, M. 1968. An experimental study of particle-wall collision relating to flow of solid. California Institute of Technology. Pasadena, California. PhD Thesis. 62.
  • Patankar, N. A. 2001. A formulation for fast computations of rigid particulate flows. Center for Turbulence Research Annual Research Briefs. Northwestern University, Evanston. 185–196.
  • Patankar, N. A., N. A. Singh, D. Joseph, R. Glowinski, and T. Pan. 2000. A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow 26:1509. doi:10.1016/S0301-9322(99)00100-7
  • Peskin, C. 2002. The immersed boundary method. Acta Numerica 11:479–517. doi:10.1017/S0962492902000077
  • Peskin, C. S. 1977. Numerical analysis of blood flow in the heart. Journal of Computational Physics 25 (3):220–52. doi:10.1016/0021-9991(77)90100-0. Retrieved from http://www.sciencedirect.com/science/article/B6WHY-4DD1NNB-G6/2/cddd393d67643f0a56ebfa8e6c3a148e
  • Pianet, G., A. Ten Cate, J. J. Derksen, and E. Arquis. 2007. Assessment of the 1-fluid method for DNS of particulate flows: Sedimentation of a single sphere at moderate to high Reynolds numbers. Computers and Fluids 36 (2):359–75. doi:10.1016/j.compfluid.2005.12.001
  • Sakamoto, H., and H. Haniu. 1990. A study on vortex shedding from spheres in a uniform flow. Journal of Fluid Engineering 112:386–92. doi:10.1115/1.2909415
  • Shirgaonkar, A. A., M. A. MacIver, and N. A. Patankar. 2009. A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. Journal of Computational Physics 228 (7):2366–90. doi:10.1016/j.jcp.2008.12.006
  • Stevens, A. B., and C. M. Hrenya. 2005. Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technology 154 (2–3):99–109. doi:10.1016/j.powtec.2005.04.033
  • Sundaram, S., and L. R. Collins. 1999. A numerical study of the modulation of isotropic turbulence by suspended particles. Journal of Fluid Mechanics 379:105–43. doi:10.1017/S0022112098003073
  • ten Cate, A., C. H. Nieuwstad, J. J. Derksen, and H. E. A. Van den Akker. 2002. Particle imaging velocimetry experiments and Lattice-Boltzmann simulations on a single sphere settling under gravity. Physics of Fluids 14 (11):4012–4025. doi:10.1063/1.1512918
  • Thompson, M. C., T. Leweke, and K. Hourigan. 2007. Sphere–wall collisions: Vortex dynamics and stability. Journal of Fluid Mechanics 575:121. doi:10.1017/S002211200600406X
  • Tomac, I., and M. Gutierrez. 2014. Fluid lubrication effects on particle flow and transport in a channel. International Journal of Multiphase Flow 65:143–56. doi:10.1016/j.ijmultiphaseflow.2014.04.007
  • Tsuji, Y. 2007. Multi-scale modeling of dense phase gas-particle flow. Chemical Engineering Science 62 (13):3410–18. doi:10.1016/j.ces.2006.12.090
  • Turkel, E. 1999. Preconditioning techniques in computational fluid dynamics. Annual Review of Fluid Mechanics 31 (1):385–416. doi:10.1146/annurev.fluid.31.1.385
  • Uhlmann, M. 2005. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics 209 (2):448–76. doi:10.1016/j.jcp.2005.03.017
  • Uzgoren, E., R. Singh, J. Sim, and W. Shyy. 2007. Computational modeling for multiphase flows with spacecraft application. Progress in Aerospace Sciences 43:138–92. doi:10.1016/j.paerosci.2007.06.003
  • Vanella, M., and E. Balaras. 2009. A moving-least-squares reconstruction for embedded-boundary formulations. Journal of Computational Physics 228 (18):6617–6628. doi:10.1016/j.jcp.2009.06.003
  • Veeramani, C., P. D. Minev, and K. Nandakumar. 2009. Collision modeling between two non-Brownian particles in multiphase flow. International Journal of Thermal Sciences 48 (2):226–233. doi:10.1016/j.ijthermalsci.2008.01.005
  • Walton, O. R. 1986. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology 30 (5):949. doi:10.1122/1.549893
  • Walton, O. R. 1993. Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mechanics of Materials 16 (1–2):239–247. doi:10.1016/0167-6636(93)90048-V
  • Xu, B. H., and A. B. Yu. 1997. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chemical Engineering Science 52 (16):2785–2809. doi:10.1016/S0009-2509(97)00081-X
  • Yang, C., Y. Ding, D. York, and W. Broeckx. 2008. Numerical simulation of sedimentation of microparticles using the discrete particle method. Particuology 6 (1):38–49. doi:10.1016/j.cpart.2007.10.006
  • Zhu, H. P., Z. Y. Zhou, R. Y. Yang, and A. B. Yu. 2007. Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science 62 (13):3378–3396. doi:10.1016/j.ces.2006.12.089

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.