319
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

CO2/O2-enhanced ethane dehydrogenation over a sol–gel synthesized Ni/ZrO2–MgO nanocatalyst: Effects of Mgo, ZrO2,and NiO on the catalytic performance

, &

References

  • Abbasi, Z., M. Haghighi, E. Fatehifar, and S. Saedy. 2011. Synthesis and physicochemical characterization of nanostructured Pt/CeO2 catalyst used for total oxidation of toluene. International Journal of Chemical Reactor Engineering 9 (45):1–19. doi:10.1515/1542-6580.2690
  • Abdul Jaleel, U. C., M. Rakhila, and G. Parameswaran. 2010. Comparison between investigational IR and crystallographic data with computational chemistry tools as validation of the methods. Advances in Physical Chemistry 2010:1–5. doi:10.1155/2010/787813
  • Agouram, S., A. Dejoz, F. Ivars, I. Vázquez, J. M. López Nieto, and B. Solsona. 2014. Oxidative dehydrogenation of ethane: A study over the structure and robustness of Ni-W-O catalysts. Fuel Processing Technology 119:105–13. doi:10.1016/j.fuproc.2013.10.017
  • Allahyari, S., M. Haghighi, A. Ebadi, and S. Hosseinzadeh. 2014. Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel. Energy Conversion and Management 83:212–22. doi:10.1016/j.enconman.2014.03.071
  • Asencios, Y. J. O., P. A. P. Nascente, and E. M. Assaf. 2012. Partial oxidation of methane on NiO-MgO-ZrO2 catalysts. Fuel 97:630–37. doi:10.1016/j.fuel.2012.02.067
  • Asgari, N., M. Haghighi, and S. Shafiei. 2013a. Synthesis and physicochemical characterization of nanostructured CeO2/clinoptilolite for catalytic total oxidation of xylene at low temperature. Environmental Progress and Sustainable Energy 32 (3):587–97. doi:10.1002/ep.11669
  • Asgari, N., M. Haghighi, and S. Shafiei. 2013b. Synthesis and physicochemical characterization of nanostructured Pd/Ceria-clinoptilolite catalyst used for P-Xylene abatement from waste gas streams at low temperature. Journal of Chemical Technology and Biotechnology 88 (4):690–703. doi:10.1002/jctb.3887
  • Asghari, E., M. Haghighi, and F. Rahmani. 2016. CO2-oxidative dehydrogenation of ethane to ethylene over Cr/MCM-41 nanocatalyst synthesized via hydrothermal/impregnation methods: Influence of chromium content on catalytic properties and performance. Journal of Molecular Catalysis A: Chemical 418–419:115–24. doi:10.1016/j.molcata.2016.03.033
  • Baneshi, J., M. Haghighi, N. Jodeiri, M. Abdollahifar, and H. Ajamein. 2014. Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications. Energy Conversion and Management 87:928–37. doi:10.1016/j.enconman.2014.07.058
  • Bi, Y.-L., K.-J. Zhen, R. X. Valenzuela, M.-J. Jia, and V. C. Corberán. 2000. Oxidative dehydrogenation of isobutane over LaBaSm oxide catalyst: Influence of the addition of CO2 in the feed. Catalysis Today 61 (1–4):369–75. doi:10.1016/s0920-5861(00)00397-7
  • Cavani, F., N. Ballarini, and A. Cericola. 2007. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today 127 (1–4):113–31. doi:10.1016/j.cattod.2007.05.009
  • Cheng, Y., H. Gong, C. Miao, W. Hua, Y. Yue, and Z. Gao. 2015. Ga2O3/HSSZ-13 for dehydrogenation of ethane: Effect of pore geometry of support. Catalysis Communications 71:42–45. doi:10.1016/j.catcom.2015.08.015
  • Cheng, Y., F. Zhang, Y. Zhang, C. Miao, W. Hua, Y. Yue, and Z. Gao. 2015. Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite. Chinese Journal of Catalysis 36 (8):1242–48. doi:10.1016/s1872-2067(15)60893-2
  • Chinchen, G. C., M. S. Spencer, K. C. Waugh, and D. A. Whan. 1987. Reply to “comments on the activity and state of the copper surface in methanol synthesis catalysts. Applied Catalysis 32:371–72. doi:10.1016/s0166-9834(00)80642-9
  • Chu, B., H. An, T. A. Nijhuis, J. C. Schouten, and Y. Cheng. 2015. A self-redox pure-phase M1 MoVNbTeOx/CeO2 nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane. Journal of Catalysis 329:471–78. doi:10.1016/j.jcat.2015.06.009
  • Delir Kheyrollahi Nezhad, P., M. Haghighi, N. Jodeiri, and F. Rahmani. 2016. Sol-gel preparation of NiO/ZrO2(x)-MgO(100-x) nanocatalyst used in CO2/O2 oxidative dehydrogenation of ethane to ethylene: Influence of Mg/Zr ratio on catalytic performance. Journal of Sol-Gel Science and Technology 80 (2):436–50. doi:10.1007/s10971-016-4120-2
  • Deng, S., S. Li, H. Li, and Y. Zhang. 2009. Oxidative dehydrogenation of ethane to ethylene with CO2 over Fe−Cr/ZrO2 catalysts. Industrial & Engineering Chemistry Research 48 (16):7561–66.
  • Dhak, D., and P. Pramanik. 2006. Particle size comparison of soft-chemically prepared transition metal (Co, Ni, Cu, Zn) aluminate spinels. Journal of the American Ceramic Society 89 (3):1014–21. doi:10.1111/j.1551-2916.2005.00769.x
  • Dury, F., M. A. Centeno, E. M. Gaigneaux, and P. Ruiz. 2003. An attempt to explain the role of CO2 and N2O as gas dopes in the feed in the oxidative dehydrogenation of propane. Catalysis Today 81 (2):95–105. doi:10.1016/s0920-5861(03)00120-2
  • Dury, F., E. M. Gaigneaux, and P. Ruiz. 2003. The active role of CO2 at low temperature in oxidation processes: the case of the oxidative dehydrogenation of propane on NiMoO4 catalysts. Applied Catalysis A: General 242 (1):187–203. doi:10.1016/s0926-860x(02)00516-1
  • El Doukkali, M., A. Iriondo, P. L. Arias, J. Requies, I. Gandarías, L. Jalowiecki-Duhamel, and F. Dumeignil. 2012. A comparison of sol-gel and impregnated Pt or/and Ni based γ-alumina catalysts for bioglycerol aqueous phase reforming. Applied Catalysis B: Environmental 125:516–29. doi:10.1016/j.apcatb.2012.06.024
  • El-Shobaky, G. A., F. F. Abdalla, M. N. Hamed, and S. A. El-Molla. 2002. Effects of ZrO2-doping of a CuO/MgO system on its surface and catalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 211 (1):1–8. doi:10.1016/s0927-7757(02)00219-4
  • Ge, S., C. Liu, S. Zhang, and Z. Li. 2003. Effect of carbon dioxide on the reaction performance of oxidative dehydrogenation of n-butane over V-Mg-O catalyst. Chemical Engineering Journal 94 (2):121–26. doi:10.1016/s1385-8947(03)00023-8
  • Goula, M. A., A. A. Lemonidou, and A. M. Efstathiou. 1996. Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-Al2O3 catalysts studied by various transient techniques. Journal of Catalysis 161 (2):626–40. doi:10.1006/jcat.1996.0225
  • Heracleous, E., A. F. Lee, K. Wilson, and A. A. Lemonidou. 2005. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: Structural characterization and reactivity studies. Journal of Catalysis 231 (1):159–71. doi:10.1016/j.jcat.2005.01.015
  • Heracleous, E., A. A. Lemonidou, and J. A. Lercher. 2004. Mechanistic features of the ethane oxidative dehydrogenation by in situ FTIR spectroscopy over a MoO3/Al2O3 catalyst. Applied Catalysis A: General 264 (1):73–80. doi:10.1016/j.apcata.2003.12.030
  • Khajeh Talkhoncheh, S., and M. Haghighi. 2015. Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina. Journal of Natural Gas Science and Engineering 23:16–25. doi:10.1016/j.jngse.2015.01.020
  • Khoshbin, R., and M. Haghighi. 2012. Urea-nitrate combustion synthesis and physicochemical characterization of CuO-ZnO-Al2O3 nanoparticles over HZSM-5. Chinese Journal of Inorganic Chemistry 28 (9):1967–78.
  • Khoshbin, R., and M. Haghighi. 2014. Direct conversion of syngas to dimethyl ether as a green fuel over ultrasound-assisted synthesized CuO-ZnO-Al2O3/HZSM-5 nanocatalyst: Effect of active phase ratio on physicochemical and catalytic properties at different process conditions. Catalysis Science & Technology 4 (6):1779–92. doi:10.1039/c3cy01089a
  • Laveille, P., G. Biausque, H. Zhu, J.-M. Basset, and V. Caps. 2013. A high-throughput study of the redox properties of Nb-Ni oxide catalysts by low temperature CO oxidation: Implications in ethane ODH. Catalysis Today 203:3–9. doi:10.1016/j.cattod.2012.05.020
  • Leveles, L., K. Seshan, J. A. Lercher, and L. Lefferts. 2003. Oxidative conversion of propane over lithium-promoted magnesia catalyst: II. Active site characterization and hydrocarbon activation. Journal of Catalysis 218 (2):307–14. doi:10.1016/s0021-9517(03)00113-1
  • Li, H., and J. Wang. 2004. Study on CO2 reforming of methane to syngas over Al2O3-ZrO2 supported Ni catalysts prepared via a direct sol-gel process. Chemical Engineering Science 59 (22–23):4861–67. doi:10.1016/j.ces.2004.07.076
  • Li, J.-H., C.-C. Wang, C.-J. Huang, Y.-F. Sun, W.-Z. Weng, and H.-L. Wan. 2010. Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene. Applied Catalysis A: General 382 (1):99–105. doi:10.1016/j.apcata.2010.04.034
  • Lin, X., C. A. Hoel, W. M. H. Sachtler, K. R. Poeppelmeier, and E. Weitz. 2009. Oxidative dehydrogenation (ODH) of ethane with O2 as oxidant on selected transition metal-loaded zeolites. Journal of Catalysis 265 (1):54–62. doi:10.1016/j.jcat.2009.04.007
  • Lisi, L., L. Marchese, H. O. Pastore, A. Frache, G. Ruoppolo, and G. Russo. 2003. Evaluating the catalytic performances of SAPO-34 catalysts for the oxidative dehydrogenation of ethane. Topics in Catalysis 22 (1–2):95–99.
  • Marchese, L., A. Frache, G. Gatti, S. Coluccia, L. Lisi, G. Ruoppolo, G. Russo, and H. O. Pastore. 2002. Acid SAPO-34 catalysts for oxidative dehydrogenation of ethane. Journal of Catalysis 208 (2):479–484. doi:10.1006/jcat.2002.3578
  • Morales, E., and J. H. Lunsford. 1989. Oxidative dehydrogenation of ethane over a lithium-promoted magnesium oxide catalyst. Journal of Catalysis 118 (1):255–65. doi:10.1016/0021-9517(89)90315-1
  • Nakamura, K.-I., T. Miyake, T. Konishi, and T. Suzuki. 2006. Oxidative dehydrogenation of ethane to ethylene over NiO loaded on high surface area MgO. Journal of Molecular Catalysis 260 (1–2):144–51. doi:10.1016/j.molcata.2006.06.058
  • Pompeo, F., N. N. Nichio, M. M. V. M. Souza, D. V. Cesar, O. A. Ferretti, and M. Schmal. 2007. Study of Ni and Pt catalysts supported on α-Al2O3 and ZrO2 applied in methane reforming with CO2. Applied Catalysis A: General 316 (2):175–83. doi:10.1016/j.apcata.2006.09.007
  • Rahmani, F., and M. Haghighi. 2015. Sono-dispersion of Cr over nanostructured LaAPSO-34 used in CO2 assisted dehydrogenation of ethane: Effects of Si/Al ratio and La incorporation. Journal of Natural Gas Science and Engineering 27:1684–1701. doi:10.1016/j.jngse.2015.10.035
  • Rahmani, F., and M. Haghighi. 2016a. C2H6/CO2 oxidative dehydrogenation (ODH) reaction on nanostructured CrAPSO-34 catalyst: One-pot hydrothermal vs. conventional hydrothermal/impregnation catalyst synthesis. Korean Journal of Chemical Engineering 33 (9):2555–66. doi:10.1007/s11814-016-0125-3
  • Rahmani, F., and M. Haghighi. 2016b. One-pot hydrothermal synthesis of ZSM-5-CeO2 composite as a support for Cr-based nanocatalyst: Influence of ceria loading and process conditions on CO2-enhanced dehydrogenation of ethane. RSC Advances 6 (92):89551–63. doi:10.1039/c6ra15787d
  • Rahmani, F., M. Haghighi, and S. Mahboob. 2016. CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: Effects of ultrasound irradiation and ZrO2 loading on catalytic activity and stability. Ultrasonics Sonochemistry 33:150–63. doi:10.1016/j.ultsonch.2016.04.034
  • Rahmani, F., M. Haghighi, and B. Mohammadkhani. 2017. Enhanced dispersion of Cr nanoparticles over nanostructured ZrO2-doped ZSM-5 used in CO2-oxydehydrogenation of ethane. Microporous & Mesoporous Materials 242:34–49. doi:10.1016/j.micromeso.2017.01.012
  • Rahmani, F., M. Haghighi, Y. Vafaeian, and P. Estifaee. 2014. Hydrogen production via CO2 reforming of methane over ZrO2-doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method. Journal of Power Sources 272:816–27. doi:10.1016/j.jpowsour.2014.08.123
  • Rakic, V., V. Dondur, and R. Hercigonja. 2003. FTIR study of carbon monoxide adsorption on ion-exchanged X, Y and mordenite type zeolites. Journal of the Serbian Chemical Society 68 (4–5):409–416. doi:10.2298/jsc0305409r
  • Ramesh, Y., P. T. Bai, B. H. Babu, N. Lingaiah, K. S. Rama Rao, and P. S. Prasad. 2014. Oxidative dehydrogenation of ethane to ethylene on Cr2O3/Al2O3-ZrO2 catalysts: The influence of oxidizing agent on ethylene selectivity. Applied Petrochemical Research 4 (3):247–52. doi:10.1007/s13203-014-0043-4
  • Ramos, R., M. Pilar Pina, M. Menéndez, J. Santamaría, and G. S. Patience. 2001. Oxidative dehydrogenation of propane to propene, 1: Kinetic study on V/MgO. The Canadian Journal of Chemical Engineering 79 (6):891–901. doi:10.1002/cjce.5450790607
  • Rubinstein, A. M., A. A. Dulov, A. A. Slinkin, L. A. Abramova, I. S. Gershenzon, L. A. Gorskaya, V. J. Danyushevskii, M. I. Dashevskii, A. L. Klyachko-Gurvich, T. K. Lavrovskaya, L. I. Lafer, and V. I. Yakerson. 1974. Role of structure and electronic interactions in the catalytic behavior of NiO-TiO2 system. Journal of Catalysis 35 (1):80–91. doi:10.1016/0021-9517(74)90186-9
  • Sabnis, S., and L. H. Block. 1997. Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer Bulletin 39 (1):67–71. doi:10.1007/s002890050121
  • Savova, B., S. Loridant, D. Filkova, and J. M. M. Millet. 2010. Ni-Nb-O catalysts for ethane oxidative dehydrogenation. Applied Catalysis A: General 390 (1–2):148–57. doi:10.1016/j.apcata.2010.10.004
  • Schuurman, Y., V. Ducarme, T. Chen, W. Li, C. Mirodatos, and G. A. Martin. 1997. Low temperature oxidative dehydrogenation of ethane over catalysts based on group VIII metals. Applied Catalysis A: General 163 (1–2):227–35. doi:10.1016/s0926-860x(97)00147-6
  • Shi, X., S. Ji, and K. Wang. 2008. Oxidative dehydrogenation of ethane to ethylene with carbon dioxide over Cr-Ce/SBA-15 catalysts. Catalysis Letters 125 (3–4):331–39. doi:10.1007/s10562-008-9569-3
  • Skoufa, Z., E. Heracleous, and A. A. Lemonidou. 2012. Investigation of engineering aspects in ethane ODH over highly selective Ni0.85Nb0.15Ox catalyst. Chemical Engineering Science 84:48–56. doi:10.1016/j.ces.2012.08.007
  • Talati, A., M. Haghighi, and F. Rahmani. 2016a. Impregnation vs. coprecipitation dispersion of Cr over TiO2 and ZrO2 used as active and stable nanocatalysts in oxidative dehydrogenation of ethane to ethylene by carbon dioxide. RSC Advances 6 (50):44195–204. doi:10.1039/c6ra05049b
  • Talati, A., M. Haghighi, and F. Rahmani. 2016b. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TiO2ZrO2 nanocatalyst: Effect of active phase and support composition on catalytic properties and performance. Advanced Powder Technology 27 (4):1195–1206. doi:10.1016/j.apt.2016.04.003
  • Wang, L., W. Chu, C. Jiang, Y. Liu, J. Wen, and Z. Xie. 2012. Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts. Journal of Natural Gas Chemistry 21 (1):43–48. doi:10.1016/s1003-9953(11)60331-9
  • Wang, Y., D. L. An, and Q. H. Zhang. 2010. Catalytic selective oxidation or oxidative functionalization of methane and ethane to organic oxygenates. Science China Chemistry 53 (2):337–50. doi:10.1007/s11426-010-0045-8
  • Wu, J., S. M. Sharada, C. Ho, A. W. Hauser, M. Head-Gordon, and A. T. Bell. 2015. Ethane and propane dehydrogenation over PtIr/Mg(Al)O. Applied Catalysis A: General 506:25–32. doi:10.1016/j.apcata.2015.08.029
  • Wu, Y., J. Gao, Y. He, and T. Wu. 2012. Preparation and characterization of Ni-Zr-O nanoparticles and its catalytic behavior for ethane oxidative dehydrogenation. Applied Surface Science 258 (11):4922–28. doi:10.1016/j.apsusc.2012.01.120
  • Yoo, J. S., P. S. Lin, and S. D. Elfline. 1993. Gas-phase oxygen oxidations of alkylaromatics over CVD Fe/Mo/borosilicate molecular sieve. II. The role of carbon dioxide as a co-oxidant. Applied Catalysis A: General 106 (2):259–73. doi:10.1016/0926-860x(93)80181-o
  • Zhang, L., X. Wang, J.-M. M. Millet, P. H. Matter, and U. S. Ozkan. 2008. Investigation of highly active Fe-Al-Cu catalysts for water-gas shift reaction. Applied Catalysis A: General 351 (1):1–8. doi:10.1016/j.apcata.2008.08.019
  • Zhu, H., H. Dong, P. Laveille, Y. Saih, V. Caps, and J.-M. Basset. 2014. Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catalysis Today 228:58–64. doi:10.1016/j.cattod.2013.11.061
  • Zhu, H., S. Ould-Chikh, D. H. Anjum, M. Sun, G. Biausque, J.-M. Basset, and V. Caps. 2012. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane. Journal of Catalysis 285 (1):292–303. doi:10.1016/j.jcat.2011.10.005
  • Zhu, H., D. C. Rosenfeld, D. H. Anjum, S. S. Sangaru, Y. Saih, S. Ould-Chikh, and J.-M. Basset. 2015. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene. Journal of Catalysis 329:291–306. doi:10.1016/j.jcat.2015.05.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.