185
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Removal of nitrophenols from water using cellulose derived nitrogen doped graphitic carbon material containing titanium dioxide

, , , , , , & show all

References

  • Ahmaruzzaman, M., and S. L. Gayatri. 2010. Activated tea waste as a potential low-cost adsorbent for the removal of P-nitrophenol from wastewater. J. Chem. Eng. Data 55 (11):4614–23.
  • Ahmaruzzaman, M., and S. L. Gayatri. 2011. Activated neem leaf: A novel adsorbent for the removal of phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solutions. J. Chem. Eng. Data 56 (7):3004–16.
  • Ahmaruzzaman, M., and D. K. Sharma. 2005. Adsorption of phenols from wastewater. J. Colloid Interface Sci. 287 (1):14–24.
  • Aksu, Z., and J. Yener. 2001. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage. 21 (8):695–702.
  • Alinnor, I. J., and M. A. Nwachukwu. 2011. A study on removal characteristics of para-nitrophenol from aqueous solution by fly ash. J. Environ. Chem. Ecotoxicol. 3 (2):32–36.
  • Ayral, C., C. J. Lebigue, F. Stüber, A. M. Wilhelm, and H. Delmas. 2010. Catalytic wet air oxidation of phenolic compounds and mixtures over activated carbon: Conversion, mineralization, and catalyst stability. Ind. Eng. Chem. Res. 49 (21):10707–14.
  • Bhar, S., and R. Ananthakrishnan. 2015. Utilization of Ru (II)-complex immobilized ZnO hybrid in presence of Pt (II) co-catalyst for photocatalytic reduction of 4-nitrophenol under visible light. RSC Adv. 5 (27):20704–11.
  • Bingcai, P., W. Du, W. Zhang, X. Zhang, Q. Zhang, B. Pan, L. Lv, Q. Zhang, and J. Chen. 2007. Improved adsorption of 4-nitrophenol onto a novel hyper-cross-linked polymer. Environ. Sci. Technol. 41 (14):5057–62.
  • Carvajal-Bernal, A. M., F. Gómez, L. Giraldo, and J. C. Moreno-Piraján. 2015. Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications. Microporous Mesoporous Mat. 209:150–56.
  • Cooney, D. O. 1999. Adsorption design for wastewater treatment. Boca Raton, FL: Lewis Publisher, 31–33.
  • Del Bubba, M., C. A. Arias, and H. Brix. 2003. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res. 37 (14):3390–400.
  • Delval, F., G. Crini, and J. Vebrel. 2006. Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product. Bioresource Technol. 97 (16):2173–81.
  • Deryło-Marczewska, A., and A. W. Marczewski. 2002. Effect of adsorbate structure on adsorption from solutions. Appl. Surf. Sci. 196 (1–4):264–72.
  • Dieckmann, M. S., and K. A. Gray. 1996. A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries. Water Res. 30 (5):1169–83.
  • Dyke, J. C., H. Hu, D. J. Lee, C. C. Ko, and W. You. 2014. The role of temperature in forming sol-gel biocomposites containing polydopamine. J. Mater. Chem. B 2 (44):7704–11.
  • Environmental Protection Agency (EPA). 1980. Nitrophenol, ambient water quality criteria. Washington, DC: U.S. Environmental Protection Agency, C1–26.
  • Gao, L., R. Li, X. Sui, R. Li, C. Chen, and Q. Chen. 2014. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ. Sci. Technol. 48 (17):10191–97.
  • Gharbani, P., and A. Mehrizad. 2014. Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J. Saudi Chem. Soci. 18 (5):601–05.
  • Ghosh, U. K., N. C. Pradhan, and B. Adhikari. 2006. Synthesis and characterization of porous polyurethaneurea membranes for pervaporative separation of 4-nitrophenol from aqueous solution. Bull. Mater. Sci. 29 (3):225–31.
  • Gu, L., X. Zhang, and L. Lei. 2008. Degradation of aqueous P -nitrophenol by ozonation integrated with activated carbon. Ind. Eng. Chem. Res. 47 (18):6809–15.
  • Ignacimuthu, S., M. Ayyanar, and K. Sankarasivaraman. 2008. Ethnobotanical study of medicinal plants used by Paliyar Tribals in Theni District of Tamil Nadu, India. Fitoterapia 79 (7):562–68.
  • Jaerger, S., A. Dos Santos, A. N. Fernandes, and C. A. P. Almeida. 2015. Removal of P-nitrophenol from aqueous solution using brazilian peat: Kinetic and thermodynamic studies. Water Air Soil Pollut. 226 (8):236.
  • Jerng, S. K., D. S. Yu, J. H. Lee, C. Kim, S. Yoon, and S. H. Chun. 2011. Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy. Nanoscale Res. Lett. 6 (1):565.
  • Kheamrutai, T., P. Limsuwan, and B. Ngotawornchai. 2008. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J. Nat. Sci. 42 (5):357–61.
  • Kim, N. D., W. Kim, J. B. Joo, S. Oh, P. Kim, Y. Kim, and J. Yi. 2008. Electrochemical capacitor performance of N-doped mesoporous carbons Prepared by ammoxidation. J. Power Sour. 180 (1):671–75.
  • Koubaissy, B., G. Joly, and P. Magnoux. 2008. Adsorption and competitive adsorption on zeolites of nitrophenol compounds present in wastewater. Ind. Eng. Che. Res. 47 (23):9558–65.
  • Lee, H., S. M. Dellatore, W. M. Miller, and P. B. Messersmith. 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science 318 (5849):426–30.
  • Lee, Y. H., Y. F. Lee, K. H. Chang, and C. C. Hu. 2011. Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem. Commun. 13 (1):50–53.
  • Li, L., and M. Wang. 2016. Advanced nanomatericals for solar photocatalysis. Advanced nanomatericals for solar photocatalysis. In Advanced catalytic materials-photocatalysis and other current trends, ed. L. E. Norena and J.-A. Wang. InTech, Croatia, 169–230.
  • Li, K., Z. Zheng, J. Feng, J. Zhang, X. Luo, G. Zhao, and Huang, X. 2009. Adsorption of P-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk. J. Hazard. Mater. 166 (2–3):1180–85.
  • Lian, P., X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang. 2010. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55 (12):3909–14.
  • Liu, B., F. Yang, Y. Zou, and Y. Peng. 2014. Adsorption of phenol and P-nitrophenol from aqueous solutions on metal–organic frameworks: Effect of hydrogen bonding. J. Chem. Eng. Data. 59 (5):1476–82.
  • Mehrizad, A. 2017. Adsorption studies of some phenol derivatives onto Ag-cuttlebone nanobiocomposite: Modeling of process by response surface methodology. Res. Chem. Intermed. 43 (7):4295–310.
  • Mehrizad, A., M. Aghaie, P. Gharbani, S. Dastmalchi, M. Monajjemi, and K. Zare. 2012. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iran. J. Environ. Health Sci. Eng. 9 (1):1–5.
  • Mehrizad, A., and P. Gharbani. 2014. Decontamination of 4-chloro-2-nitrophenol from aqueous solution by graphene adsorption: Equilibrium, kinetic, and thermodynamic studies. Pol. J. Environ. Stud. 23 (6):2111–216.
  • Mehrizad, A., and P. Gharbani. 2016. Study of 1-chloro-4-nitrobenzene adsorption on carbon nanofibers by experimental design. Islamic Azad Univ. Tonekabon Branch 7 (1):77–84.
  • Mehrizad, A., K. Zare, H. Aghaie, and S. Dastmalchi. 2012. Removal of 4-chloro-2-nitrophenol occurring in drug and pesticide waste by adsorption onto nano-titanium dioxide. Int. J. Environ. Sci. Tech. 9 (2):355–60.
  • Mico, B. A., and L. R. Pohl. 1983. Reductive oxygenation of carbon tetrachloride: Trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine. Arch. Biochem. Biophys. 225 (2):596–609.
  • Mishra, K. P., and P. R. Gogate. 2012. Ultrasonic degradation of P-nitrophenol in the presence of additives at pilot scale capacity. Ind. Eng. Chem. Res. 51 (3):1166–72.
  • Moreno-Castilla, C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42 (1):83–94.
  • Pal, B., M. Sharon, and G. Nogami. 1999. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties. Mater. Chem. Phys. 59 (3):254–61.
  • Rajamanickam, D., and M. Shanthi. 2012. Photocatalytic degradation of an organic pollutant by zinc oxide–solar process. Arab. J. Chem. 9 (2):1858–68.
  • Raymundo-Piñero, E., D. Cazorla-Amoros, and A. Linares-Solano. 2003. The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon 41 (10):1925–32.
  • San, N., A. Hatipoğlu, G. Koçtürk, and Z. Çınar. 2002. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates. J. Photochem. Photobiol. A: Chem. 146 (3):189–97.
  • Shalini, J., K. J. Sankaran, C. L. Dong, C. Y. Lee, N. H. Tai, and I. N. Lin. 2013. In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale 5 (3):1159–67.
  • Shen, S., Z. Chang, and H. Liu. 2006. Three-liquid-phase extraction systems for separation of phenol and P-nitrophenol from wastewater. Sep. Purif. Technol. 49 (3):217–22.
  • Sismanoglu, T., and S. Pura. 2001. Adsorption of aqueous nitrophenols on clinoptilolite. Colloids Surfaces A Physicochem. Eng. Asp. 180 (1):1–6.
  • Syracuse Research Corporation. 1992. Toxicological profile for nitrophenols: 2-nitrophenol, 4-nitrophenol. Atlanta, GA: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Diseases Registry, 79–80.
  • Tabatabaei, S., S. Dastmalchi, A. Mehrizad, and P. Gharbani. 2011. Enhancement of 4-nitrophenol ozonation in water by nano ZnO catalyst. J. Environ. Health Sci. Eng. 8 (4):363–72.
  • Takahashi, N., T. Nakai, Y. Satoh, and Y. Katoh. 1994. Variation of biodegradability of nitrogenous organic compounds by ozonation. Water Res. 28 (7):1563–70.
  • Terzyk, A. P. 2003. Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. J. Colloid Interface Sci. 268 (2):301–29.
  • Tewari, B. B., and B. Bhushan. 2014. Removal of P-aminophenol and P-nitrophenol from aqueous solution through adsorption on bismuth, lead, and manganese ferrocyanides and their relevance to environmental issues. Russ. J. Phys. Chem. A 88 (9):1564–68.
  • Thampi, V. V. A., P. Dhandapani, G. Manivasagam, and B. Subramanian. 2015. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite. Int. J. Nanomed. 10 (1):107–18.
  • Tomei, M. C., M. C. Annesini, G. P. Prpich, and A. J. Daugulis. 2009. Biodegradation of 4-nitrophenol in a two-phase system operating with polymers as the partitioning phase. Environ. Sci. Technol. 43 (18):7105–10.
  • Wang, Z., R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, and Z. Zhu. 2011. Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5 (3):1677–84.
  • Wang, H., C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui. 2011. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21 (14):5430.
  • Wang, L., P. Yu, L. Zhao, C. Tian, D. Zhao, W. Zhou, J. Yin, R. Wang, and H. Fu. 2014. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Sci. Rep. 4 (5184):43–51.
  • Xiao-Jing, H. 2012. The influence of platinum on the structure and photocatalytic performance of hydrogen tatanate nanotubes. J. Chil. Chem. Soc. 57 (1):1008–011.
  • Yang, L., S. Luo, Y. Li, Y. Xiao, Q. Kang, and Q. Cai. 2010. High efficient photocatalytic degradation of P-nitrophenol on a unique Cu2O/TiO2 P–N heterojunction network catalyst. Environ. Sci. Technol. 44 (19):7641–46.
  • Zhang, B., F. Li, T. Wu, D. Sun, and Y. Li. 2015. Adsorption of p-nitrophenol from aqueous solutions using nanographite oxide. Colloids and Surfaces A: Physicochem. Eng. Aspects 464 (1):78–88.
  • Zhao, B., G. Mele, I. Pio, J. Li, L. Palmisano, and G. Vasapollo. 2010. Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-fenton catalyst. J. Hazard. Mater. 176 (1):569–74.
  • Zhou, H. C., J. R. Long, and O. M. Yaghi. 2012. Introduction to metal–organic frameworks. Chem. Rev. 112 (2):673–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.