253
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

Two-fluid model with variable particle–particle restitution coefficient: application to the simulation of FCC riser reactor

ORCID Icon, , &
Pages 549-558 | Received 04 Jun 2017, Accepted 17 Dec 2018, Published online: 11 Apr 2019

References

  • Benyahia, S. 2008. Verification and validation study of some polydisperse kinetic theories. Chemical Engineering Science 63 (23):5672–80. doi:10.1016/j.ces.2008.08.016.
  • Benyahia, S. 2012. Analysis of model parameters affecting the pressure profile in a circulating fluidized bed. AIChE Journal 58 (2):427–39. doi:10.1002/aic.12603.
  • Benyahia, S., M. Syamlal, and T. J. O'Brien. 2007. Study of the ability of multiphase continuum models to predict core-annulus flow. AIChE Journal 53 (10):2549–68. doi:10.1002/aic.11276.
  • Chalermsinsuwan, B., T. Chanchuey, W. Buakhao, D. Gidaspow, and P. Piumsomboon. 2012. Computational fluid dynamics of circulating fluidized bed downer: Study of modeling parameters and system hydrodynamic characteristics. Chemical Engineering Journal 189–190:314–35. doi:10.1016/j.cej.2012.02.020.
  • Chang, J., W. Cai, K. Zhang, F. Meng, L. Wang, and Y. Yang. 2014. Computational investigation of the hydrodynamics, heat transfer and kinetic reaction in an FCC gasoline riser. Chemical Engineering Science 111:170–9. doi:10.1016/j.ces.2014.02.030.
  • Chen, S., Y. Fan, Z. Yan, W. Wang, and C. Lu. 2016. CFD simulation of gas–solid two-phase flow and mixing in a FCC riser with feedstock injection. Powder Technology 287:29–42. doi:10.1016/j.powtec.2015.09.005.
  • Chen, G.-Q., and Z.-H. Luo. 2014. New insights into intraparticle transfer, particle kinetics, and gas–solid two-phase flow in polydisperse fluid catalytic cracking riser reactors under reaction conditions using multi-scale modeling. Chemical Engineering Science 109:38–52. doi:10.1016/j.ces.2014.01.015.
  • Chen, G.-Q., Z.-H. Luo, X.-Y. Lan, C.-M. Xu, and J.-S. Gao. 2013. Evaluating the role of intraparticle mass and heat transfers in a commercial FCC riser: A meso-scale study. Chemical Engineering Journal 228:352–65. doi:10.1016/j.cej.2013.02.068.
  • Chen, G., Q. Su, and Z. Luo. 2016. Modeling the electrostatic effect on the hydrodynamic behavior in FCC risers: From understanding to application. Particuology 25:122–32. doi:10.1016/j.partic.2015.05.008.
  • Cloete, S., S. Amini, and S. T. Johansen, 2011. A fine resolution parametric study on the numerical simulation of gas–solid flows in a periodic riser section. Powder Technology 205 (1–3):103–11. doi:https://doi.org/https://doi.org/10.1016/j.powtec.2010.08.072
  • Ding, J., and D. Gidaspow. 1990. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal 36 (4):523–38. doi:10.1002/aic.690360404.
  • Fede, P., O. Simonin, and A. Ingram. 2016. 3D numerical simulation of a lab-scale pressurized dense fluidized bed focussing on the effect of the particle–particle restitution coefficient and particle–wall boundary conditions. Chemical Engineering Science 142:215–35. doi:10.1016/j.ces.2015.11.016.
  • Gao, J. S., X. Y. Lan, Y. P. Fan, J. Chang, G. Wang, C. X. Lu, and C. M. Xu. 2009. CFD modeling and validation of the turbulent fluidized bed of FCC particles. AIChE Journal 55 (7):1680–94. doi:10.1002/aic.11824.
  • Gao, J., C. Xu, S. Lin, G. Yang, and Y. Guo. 1999. Advanced model for turbulent gas–solid flow and reaction in FCC riser reactors. AIChE Journal 45 (5):1095–113. doi:10.1002/aic.690450517.
  • Gao, J., C. Xu, S. Lin, G. Yang, and Y. Guo. 2001. Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors. AIChE Journal 47 (3):677–92. doi:10.1002/aic.690470315.
  • Goldschmidt, M. J. V., J. A. M. Kuipers, and W. P. M. van Swaaij. 2001. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: Effect of coefficient of restitution on bed dynamics. Chemical Engineering Science 56 (2):571–8. doi:10.1016/S0009-2509(00)00262-1.
  • Grace, J. R., and F. Taghipour. 2004. Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technology 139 (2):99–110. doi:10.1016/j.powtec.2003.10.006.
  • Kantak, A. A., and R. H. Davis. 2006. Collisions of spheres with wet and dry porous layers on a solid wall. Chemical Engineering Science 61 (2):417–27. doi:10.1016/j.ces.2005.07.027.
  • Lan, X., C. Xu, G. Wang, L. Wu, and J. Gao. 2009. CFD modeling of gas–solid flow and cracking reaction in two-stage riser FCC reactors. Chemical Engineering Science 64 (17):3847–58. doi:10.1016/j.ces.2009.05.019.
  • Li, J., Z.-H. Luo, X.-Y. Lan, C.-M. Xu, and J.-S. Gao. 2013. Numerical simulation of the turbulent gas–solid flow and reaction in a polydisperse FCC riser reactor. Powder Technology 237:569–80. doi:10.1016/j.powtec.2012.12.062.
  • Liu, C., W. Wang, N. Zhang, and J. Li. 2015. Structure-dependent multi-fluid model for mass transfer and reactions in gas–solid fluidized beds. Chemical Engineering Science 122:114–29. doi:10.1016/j.ces.2014.09.002.
  • Lopes, G. C., L. M. Rosa, M. Mori, J. R. Nunhez, and W. P. Martignoni. 2011. Three-Dimensional Modeling of Fluid Catalytic Cracking Industrial Riser Flow and Reactions. Computers & Chemical Engineering 35:2159–68. doi:10.1016/j.compchemeng.2010.12.014.
  • Reuge, N., L. Cadoret, C. Coufort-Saudejaud, S. Pannala, M. Syamlal, and B. Caussat. 2008. Multifluid Eulerian modeling of dense gas–solids fluidized bed hydrodynamics: Influence of the dissipation parameters. Chemical Engineering Science 63 (22):5540–51. doi:10.1016/j.ces.2008.07.028.
  • Sharma, A., S. Wang, V. Pareek, H. Yang, and D. Zhang. 2014. CFD modeling of mixing/segregation behavior of biomass and biochar particles in a bubbling fluidized bed. Chemical Engineering Science 106:264–74. doi:10.1016/j.ces.2013.11.019.
  • Sutkar, V. S., N. G. Deen, J. T. Padding, V. Salikov, B. Crüger, S. Antonyuk, S. Heinrich, and J. A. M. Kuipers. 2015. A novel approach to determine wet restitution coefficients through a unified correlation and energy analysis. AIChE Journal 61 (3):769–79. doi:10.1002/aic.14693.
  • Sutkar, V. S., N. G. Deen, A. V. Patil, V. Salikov, S. Antonyuk, S. Heinrich, and J. A. M. Kuipers. 2016. CFD–DEM model for coupled heat and mass transfer in a spout fluidized bed with liquid injection. Chemical Engineering Journal 288:185–97. doi:10.1016/j.cej.2015.11.044.
  • Taghipour, F., N. Ellis, and C. Wong. 2005. Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chemical Engineering Science 60 (24):6857–67. doi:10.1016/j.ces.2005.05.044.
  • Upadhyay, M., and J.-H. Park. 2015. CFD simulation via conventional Two-Fluid Model of a circulating fluidized bed riser: Influence of models and model parameters on hydrodynamic behavior. Powder Technology 272:260–8. doi:10.1016/j.powtec.2014.12.011.
  • van Buijtenen, M. S., N. G. Deen, S. Heinrich, S. Antonyuk, and J. A. M. Kuipers. 2009. A discrete element study of wet particle–particle interaction during granulation in a spout fluidized bed. The Canadian Journal of Chemical Engineering 87 (2):308–17. doi:10.1002/cjce.20144.
  • Wang, Z, M. Ren, A. Guo, and Z. Wang. 2007. Visbreaking of the Deoiled Asphalt from Butane Deasphalting Unit Blended with FCC Slurry. Petroleum Refinery Engineering 37 (1): 6–9.
  • Wu, C., Y. Cheng, Y. Ding, and Y. Jin. 2010. CFD-DEM simulation of gas–solid reacting flows in fluid catalytic cracking (FCC) process. Chemical Engineering Science 65 (1):542–9. doi:10.1016/j.ces.2009.06.026.
  • Wu, Y., L. Peng, L. Qin, M. Wang, J. Gao, and X. Lan. 2018. Validation and application of CPFD models in simulating hydrodynamics and reactions in riser reactor with Geldart A particles. Powder Technology 323:269–83.
  • Yang, N., W. Wang, W. Ge, and J. Li. 2003. CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chemical Engineering Journal 96 (1–3):71–80. doi:10.1016/j.cej.2003.08.006.
  • Zhao, Y., B. Lu, and Y. Zhong. 2015. Influence of collisional parameters for rough particles on simulation of a gas-fluidized bed using a two-fluid model. International Journal of Multiphase Flow 71:1–13. doi:10.1016/j.ijmultiphaseflow.2014.12.002.
  • Zhong, H., S. Liang, J. Zhang, and Y. Zhu. 2016. Multi-fluid model with variable particle density and diameter based on mass conservation at the particle scale. Powder Technology 294:43–54. doi:10.1016/j.powtec.2016.02.024.
  • Zhong, W., A. Yu, G. Zhou, J. Xie, and H. Zhang. 2016. CFD simulation of dense particulate reaction system: Approaches, recent advances and applications. Chemical Engineering Science 140:16–43. doi:10.1016/j.ces.2015.09.035.
  • Zhong, H., J. Zhang, Y. Zhu, and S. Liang. 2016. Multi-fluid modeling biomass fast pyrolysis in the fluidized-bed reactor including particle shrinkage effects. Energy & Fuels 30:6440–7. doi:10.1021/acs.energyfuels.6b00914.
  • Zimmermann, S., and F. Taghipour. 2005. CFD Modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors. Industrial & Engineering Chemistry Research 44:9818–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.