356
Views
23
CrossRef citations to date
0
Altmetric
ARTICLES

Effect of pH variations on morphological transformation of biosynthesized MgO nanoparticles

, ORCID Icon &
Pages 573-586 | Received 22 Mar 2018, Accepted 01 Jan 2019, Published online: 22 Feb 2019

References

  • Agarwal, S., N. Sadeghi, I. Tyagi, V. K. Gupta, and A. Fakhri. 2016. Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. Journal of Colloid and Interface Science 478:430–8. doi:10.1016/j.jcis.2016.06.029.
  • Ahmad, N., S. Sharma, M. K. Alam, V. N. Singh, S. F. Shamsi, B. R. Mehta, and A. Fatma. 2010. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces 81 (1):81–6. doi:10.1016/j.colsurfb.2010.06.029.
  • Akhtar, M. J., M. Ahamed, S. Kumar, M. A. M. Khan, J. Ahmad, and S. A. Alrokayan. 2012. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine 7:845–57.
  • Alam, M. S., and E. Janata. 2006. UV absorption spectrum, formation and disappearance of the oxide radical ion O − in aqueous solution: A pulse radiolysis study. Chemical Physics Letters 417 (4–6):363–6. doi:10.1016/j.cplett.2005.10.057.
  • Alias, S. S., A. B. Ismail, and A. A. Mohamad. 2010. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. Journal of Alloys and Compounds 499 (2):231–7. doi:10.1016/j.jallcom.2010.03.174.
  • Alwan, R. M., Q. A. Kadhim, K. M. Sahan, R. A. Ali, R. J. Mahdi, N. A. Kassim, and A. N. Jassim. 2015. Synthesis of zinc oxide nanoparticles via sol–Gel route and their characterization. Nanoscience and Nanotechnology 5 (1):1–6.
  • Amin, I., Y. Norazaidah, and K. I. E. Hainida. 2006. Antioxidant activity and phenolic content of raw and blanched amaranthus species. Food Chemistry 94 (1):47–52. doi:10.1016/j.foodchem.2004.10.048.
  • Antony, T. S., M. P. J. Peter, and J. Y. Raj. 2013. Phytochemical analysis of stylosanthes fruticosa using UV-VIS, FTIR and GCMS. Research Journal of Chemical Sciences 3 (11):14–23.
  • Arefi, M. R., and S. Rezaei-Zarchi. 2012. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. International Journal of Molecular Sciences 13 (4):4340–50.
  • Armendariz, V., I. Herrera, J. R. Peralta-Videa, M. Jose-Yacaman, H. Troiani, P. Santiago, and J. L. Gardea-Torresdey. 2004. Size controlled gold nanoparticle formation by avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research 6 (4):377–82. doi:10.1007/s11051-004-0741-4.
  • Awwad, A. M., B. A. Albiss, and N. M. Salem. 2015. Antibacterial activity of synthesized copper oxide nanoparticles using malva sylvestris leaf extract. SMU Med J 2:91–101.
  • Ayyub, P., V. R. Palkar, S. Chattopadhyay, and M. Multani. 1995. Effect of crystal size reduction on lattice symmetry and cooperative properties. Physical Review B 51 (9):6135. doi:10.1103/PhysRevB.51.6135.
  • Badawy, A. M. E., T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental Science & Technology 44 (4):1260–6. doi:10.1021/es902240k.
  • Baskar, G., J. Chandhuru, K. Sheraz Fahad, and A. S. Praveen. 2013. Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian Journal of Pharmacy and Technology 3 (4):142–6.
  • Benelli, G. 2016. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitology Research 115 (1):23–34.
  • Bian, S.-W., I. A. Mudunkotuwa, T. Rupasinghe, and V. H. Grassian. 2011. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27 (10):6059–68.
  • Blanco, E., H. Shen, and M. Ferrari. 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology 33 (9):941–51.
  • Chen, L., P. Bai, and W. Li. 2016. Preparation of a novel magnesium oxide nanofilm of honeycomb-like structure and investigation of its properties. Chemical Engineering Journal 303:588–95. doi:10.1016/j.cej.2016.06.037.
  • Chithrani, B. D., A. A. Ghazani, and W. C. W. Chan. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters 6 (4):662–8.
  • Clark, J. H., and D. J. Macquarrie. 2008. Handbook of green chemistry and technology. Chichester, UK: John Wiley & Sons.
  • Cunningham, D. P., and L. L. Lundie. 1993. Precipitation of cadmium by clostridium thermoaceticum. Applied and Environmental Microbiology 59 (1):7–14.
  • Daniel, S. C. G., Kiruba, G. Vinothini, N. Subramanian, K. Nehru, and M. Sivakumar. 2013. Biosynthesis of Cu, ZVI, and Ag nanoparticles using dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of Nanoparticle Research 15 (1):1–10.
  • Devi, R. S., and R. Gayathri. 2014. Green synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis. International Journal of Current Engineering and Technology 4:2444–6.
  • Ding, Y., G. Zhang, H. Wu, B. Hai, L. Wang, and Y. Qian. 2001. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chemistry of Materials 13 (2):435–40. doi:10.1021/cm000607e.
  • Dwivedi, A. D., and K. Gopal. 2010. Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects 369 (1–3):27–33. doi:10.1016/j.colsurfa.2010.07.020.
  • Ee, W. C., and K. Y. Cheong. 2008. Effects of annealing temperature on ultra-low dielectric constant SiO2 thin films derived from sol–gel spin-on-coating. Physica B: Condensed Matter 403 (4):611–5. doi:10.1016/j.physb.2007.09.063.
  • El-Shall, M. S., W. Slack, W. Vann, D. Kane, and D. Hanley. 1994. Synthesis of nanoscale metal oxide particles using laser vaporization/condensation in a diffusion cloud chamber. The Journal of Physical Chemistry 98 (12):3067–70. doi:10.1021/j100063a001.
  • Fakhri, A., S. Rashidi, M. Asif, I. Tyagi, S. Agarwal, and V. K. Gupta. 2016. Dynamic adsorption behavior and mechanism of cefotaxime, cefradine and cefazolin antibiotics on CdS-MWCNT nanocomposites. Journal of Molecular Liquids 215:269–75. doi:10.1016/j.molliq.2015.12.033.
  • Fernando, T., and G. Bean. 1984. Fatty acids and sterols of Amaranthus tricolor L. Food Chemistry 15 (3):233–7. doi:10.1016/0308-8146(84)90008-6.
  • Forward, K. M., D. J. Lacks, and R. M. Sankaran. 2009. Charge segregation depends on particle size in triboelectrically charged granular materials. Physical Review Letters 102 (2):028001.
  • Gardea-Torresdey, J. L., K. J. Tiemann, J. G. Parsons, G. Gamez, and M. Jose Yacaman. 2002. Characterization of trace level Au (III) binding to alfalfa biomass (Medicago sativa) by GFAAS. Advances in Environmental Research 6 (3):313–23. doi:10.1016/S1093-0191(01)00064-8.
  • Gaumet, M., A. Vargas, R. Gurny, and F. Delie. 2008. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics 69 (1):1–9.
  • Gnanasangeetha, D., and D. S. Thambavani. 2013. Biogenic production of zinc oxide nanoparticles using Acalypha indica. Journal of Chemical, Biological and Physical Sciences (JCBPS) 4 (1):238.
  • Gunalan, S., R. Sivaraj, and R. Venckatesh. 2012. Aloe barbadensis miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97:1140–4. doi:10.1016/j.saa.2012.07.096.
  • Gupta, V. K., S. Agarwal, A. K. Bharti, A. Fakhri, and M. Naji. 2017. Pt nanoparticles decorated WO3-MWCNTs nanocomposites: preparation, characterization, and adsorption behavior. Journal of Molecular Liquids 229:514–9. doi:10.1016/j.molliq.2016.12.102.
  • Gupta, V. K., S. Agarwal, I. Tyagi, M. Sohrabi, A. Fakhri, S. Rashidi, and N. Sadeghi. 2016. Microwave-assisted hydrothermal synthesis and adsorption properties of carbon nanofibers for methamphetamine removal from aqueous solution using a response surface methodology. Journal of Industrial and Engineering Chemistry 41:158–64. doi:10.1016/j.jiec.2016.07.018.
  • Halliwell, B. 1994. Antioxidants: sense or speculation? Nutrition Today 29 (6):15–9.
  • Helble, J. J. 1998. Combustion aerosol synthesis of nanoscale ceramic powders. Journal of Aerosol Science 29 (5–6):721–36. doi:10.1016/S0021-8502(97)10016-7.
  • Helveg, S., J. V. Lauritsen, E. Laegsgaard, I. Stensgaard, J. K. Nørskov, B. S. Clausen, H. Topsøe, and F. Besenbacher. 2000. Atomic-scale structure of single-layer MoS2 nanoclusters. Physical Review Letters 84 (5):951. doi:10.1103/PhysRevLett.84.951.
  • Hoag, G. E., J. B. Collins, J. L. Holcomb, J. R. Hoag, M. N. Nadagouda, and R. S. Varma. 2009. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry 19 (45):8671–7. doi:10.1039/b909148c.
  • Hu, J.-Q., Q. Chen, Z.-X. Xie, G.-B. Han, R.-H. Wang, B. Ren, Y. Zhang, Z.-L. Yang, and Z.-Q. Tian. 2004. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials 14 (2):183–9. doi:10.1002/adfm.200304421.
  • Hu, J., Z. Wang, and J. Li. 2007. Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced raman scattering, and the application in biodetection. Sensors (Basel, Switzerland) 7 (12):3299–311.
  • Hudlikar, M., S. Joglekar, M. Dhaygude, and K. Kodam. 2012. Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Materials Letters 75:196–9. doi:10.1016/j.matlet.2012.02.018.
  • Instruments, M. 2004. Zetasizer nano series user manual. MAN0317 (1.1).
  • ISO13321, IS. 1996. Methods for determination of particle size distribution part 8: Photon correlation spectroscopy. International Organisation for Standardisation (ISO).
  • Jeevanandam, J., Y. S. Chan, and M. K. Danquah. 2016. Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Reviews 3 (2):55–67. doi:10.1002/cben.201500018.
  • Jeevanandam, J., Y. S. Chan, and M. K. Danquah. 2017. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New Journal of Chemistry 41 (7):2800–14. doi:doi:10.1039/C6NJ03176E.
  • Jeevanandam, J., Y. S. Chan, and Y. H. Ku. 2018. Aqueous eucalyptus globulus leaf extract-mediated biosynthesis of MgO nanorods. Applied Biological Chemistry 61 (2):197–208. doi:10.1007/s13765-018-0347-7.
  • Jeevanandam, J., M. K. Danquah, S. Debnath, V. S. Meka, and Y. S. Chan. 2015. Opportunities for nano-formulations in type 2 diabetes mellitus treatments. Current Pharmaceutical Biotechnology 16 (10):853–70.
  • Jones, M. R., R. J. Macfarlane, A. E. Prigodich, P. C. Patel, and C. A. Mirkin. 2011. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. Journal of the American Chemical Society 133 (46):18865–9.
  • Ju-Nam, Y., and J. R. Lead. 2008. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment 400 (1–3):396–414. doi:10.1016/j.scitotenv.2008.06.042.
  • Karthik, K., S. Dhanuskodi, C. Gobinath, and S. Sivaramakrishnan. 2017. Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Materials Letters 206:217–220.
  • Kharissova, O. V., H. V. R. Dias, B. I. Kharisov, B. O. Pérez, and V. M. J. Pérez. 2013. The greener synthesis of nanoparticles. Trends in Biotechnology 31 (4):240–8. doi:10.1016/j.tibtech.2013.01.003.
  • Klaas, J., G. Schulz-Ekloff, and N. I. Jaeger. 1997. UV-visible diffuse reflectance spectroscopy of zeolite-hosted mononuclear titanium oxide species. The Journal of Physical Chemistry B 101 (8):1305–11. doi:10.1021/jp9627133.
  • Kumar, A., and J. Kumar. 2008. On the synthesis and optical absorption studies of nano-size magnesium oxide powder. Journal of Physics and Chemistry of Solids 69 (11):2764–72. doi:10.1016/j.jpcs.2008.06.143.
  • Laurent, S., S. Dutz, U. O. Häfeli, and M. Mahmoudi. 2011. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science 166 (1–2):8–23. doi:10.1016/j.cis.2011.04.003.
  • Lin, Y.-S., C.-P. Tsai, H.-Y. Huang, C.-T. Kuo, Y. Hung, D.-M. Huang, Y.-C. Chen, and C.-Y. Mou. 2005. Well-ordered mesoporous silica nanoparticles as cell markers. Chemistry of Materials 17 (18):4570–3. doi:10.1021/cm051014c.
  • Liu, X., M. Atwater, J. Wang, and Q. Huo. 2007. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces. B, Biointerfaces 58 (1):3–7.
  • Machado, S., W. Stawiński, P. Slonina, A. R. Pinto, J. P. Grosso, H. P. Nouws, J. T. Albergaria, and C. Delerue-Matos. 2013. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Science of the Total Environment 461:323–9. doi:10.1016/j.scitotenv.2013.05.016.
  • Madhava Chetty, K., K. Sivaji, and K. Tulasi Rao. 2008. Flowering plants of Chittoor district, Andhra Pradesh, India. Student Offset Printers 169:201.
  • Madhavi, V., T. N. V. K. V. Prasad, A. V. B. Reddy, B. Ravindra Reddy, and G. Madhavi. 2013. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 116:17–25. doi:10.1016/j.saa.2013.06.045.
  • Malik, P., R. Shankar, V. Malik, N. Sharma, and T. K. Mukherjee. 2014. Green chemistry based benign routes for nanoparticle synthesis. Journal of Nanoparticles 2014:1. doi:10.1155/2014/302429.
  • Mann, S. 1985. Structure, morphology, and crystal growth of bacterial magnetite. In Magnetite biomineralization and magnetoreception in organisms, ed. J.L. Kirschvink, D.S. Jones, and B.J. MacFadden, 311–332. New York: Springer.
  • Marshall, M. J., A. S. Beliaev, A. C. Dohnalkova, D. W. Kennedy, L. Shi, Z. Wang, M. I. Boyanov, B. Lai, K. M. Kemner, J. S. McLean, et al. 2006. c-Type cytochrome-dependent formation of U (IV) nanoparticles by Shewanella oneidensis. PLoS Biology 4 (8):e268. doi:10.1371/journal.pbio.0040268.
  • Mastuli, M. S., N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi, and N. Kamarudin. 2014. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale Research Letters 9 (1):1.
  • Matthews, J. S., O. Just, B. Obi-Johnson, and W. S. Rees. 2000. CVD of MgO from a Mg (β‐ketoiminate) 2: preparation, characterization, and utilization of an intramolecularly stabilized, highly volatile, thermally robust precursor. Chemical Vapor Deposition 6 (3):129–32. doi:10.1002/(SICI)1521-3862(200006)6:3<129::AID-CVDE129>3.0.CO;2-X.
  • Meshkani, F., and M. Rezaei. 2010. Effect of process parameters on the synthesis of nanocrystalline magnesium oxide with high surface area and plate-like shape by surfactant assisted precipitation method. Powder Technology 199 (2):144–8. doi:10.1016/j.powtec.2009.12.014.
  • Mirzaei, H., and A. Davoodnia. 2012. Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chinese Journal of Catalysis 33 (9–10):1502–7. doi:10.1016/S1872-2067(11)60431-2.
  • Mittal, A. K., Y. Chisti, and U. C. Banerjee. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances 31 (2):346–56.
  • Mohanpuria, P., N. K. Rana, and S. K. Yadav. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research 10 (3):507–17. doi:10.1007/s11051-007-9275-x.
  • Moradi, O., A. Fakhri, S. Adami, and S. Adami. 2013. Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube. Journal of Colloid and Interface Science 395:224–9. doi:10.1016/j.jcis.2012.11.013.
  • Morales, A., Escobedo, E. S. Mora, and U. Pal. 2007. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S 53 (5):18.
  • Narayanan, S., B. N. Sathy, U. Mony, M. Koyakutty, S. V. Nair, and D. Menon. 2012. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Applied Materials & Interfaces 4 (1):251–60.
  • Njagi, E. C., H. Huang, L. Stafford, H. Genuino, H. M. Galindo, J. B. Collins, G. E. Hoag, and S. L. Suib. 2011. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27 (1):264–71. doi:10.1021/la103190n.
  • Orendorff, C. J., A. Gole, T. K. Sau, and C. J. Murphy. 2005. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical Chemistry 77 (10):3261–6.
  • Philip, D. 2010. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-Dimensional Systems and Nanostructures 42 (5):1417–24. doi:10.1016/j.physe.2009.11.081.
  • Philipse, A. P., and D. Maas. 2002. Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18 (25):9977–84. doi:10.1021/la0205811.
  • Piattelli, M., M. G. De Nicola, and V. Castrogiovanni. 1969. Photocontrol of amaranthin synthesis in Amaranthus tricolor. Phytochemistry 8 (4):731–6. doi:10.1016/S0031-9422(00)85844-6.
  • Prathna, T. C., A. Mukherjee, A. M. Raichur, L. Mathew, and N. Chandrasekaran. 2010. Biomimetic synthesis of nanoparticles: science, technology & applicability. London: INTECH Open Access Publisher.
  • Rai, M., A. Yadav, and A. Gade. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27 (1):76–83.
  • Rajakumar, G., A. A. Rahuman, B. Priyamvada, V. G. Khanna, D. K. Kumar, and P. J. Sujin. 2012. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Materials Letters 68:115–7. doi:10.1016/j.matlet.2011.10.038.
  • Raliya, R.,. P. Biswas, and J. C. Tarafdar. 2015. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports 5:22–6. doi:10.1016/j.btre.2014.10.009.
  • Rao, K. N. V., S. K. Padhy, S. K. Dinakaran, D. Banji, S. Madireddy, and H. Avasarala. 2010. Study of pharmacognostic, phytochemical, antimicrobial and antioxidant activities of Amaranthus tricolor Linn. leaves extract. Iran J Pharm Sci 6:289–99.
  • Rao Pasupuleti, V. 2013. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. International Journal of Nanomedicine 8:3355–64.
  • Rezaei, M., M. Khajenoori, and B. Nematollahi. 2011. Synthesis of high surface area nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technology 205 (1–3):112–6. doi:10.1016/j.powtec.2010.09.001.
  • Sahaya, Sathish, S., Janakiraman, N., and M. Johnson. 2012. Phytochemical analysis of Vitex altissima L. using UV-Vis, FTIR and GC-MS. International Journal of Pharmaceutical Sciences and Drug Research 4 (1):56–62.
  • Sastry, M., A. Ahmad, M. I. Khan, and R. Kumar. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science 85 (2):162–70.
  • Sau, T. K., and C. J. Murphy. 2004. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society 126 (28):8648–9.
  • Senthil, M., and C. Ramesh. 2012. Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest Journal of Nanomaterials & Biostructures (DJNB) 7 (4):1655–61.
  • Senthilkumar, S. R., and T. Sivakumar. 2014. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. International Journal of Pharmacy and Pharmaceutical Sciences 6 (6):461–5.
  • Seo, J.-W., H. Chung, M.-Y. Kim, J. Lee, I.-H. Choi, and J. Cheon. 2007. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small (Weinheim an Der Bergstrasse, Germany) 3 (5):850–3.
  • Shahwan, T., S. A. Sirriah, M. Nairat, E. Boyacı, A. E. Eroğlu, T. B. Scott, and K. R. Hallam. 2011. Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal 172 (1):258–66. doi:10.1016/j.cej.2011.05.103.
  • Shang, L., Y. Wang, J. Jiang, and S. Dong. 2007. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23 (5):2714–21.
  • Sharma, G., and N. D. Jasuja. 2016. Phytoassisted synthesis of magnesium oxide nanoparticles by Swertia chirayaita. Journal of Taibah University for Science 11:471–7.
  • Singh, N., P. K., Singh, A. Shukla, S. Singh, and P. Tandon. 2016. Synthesis and characterization of nanostructured magnesium oxide: insight from solid-state density functional theory calculations. Journal of Inorganic and Organometallic Polymers and Materials 26 (6):1–8.
  • Somanathan, T., V. M. Krishna, V. Saravanan, R. Kumar, and R. Kumar. 2016. MgO nanoparticles for effective uptake and release of doxorubicin drug: pH sensitive controlled drug release. Journal of Nanoscience and Nanotechnology 16 (9):9421–31. doi:10.1166/jnn.2016.12164.
  • Song, Y.-Y., F. Schmidt-Stein, S. Bauer, and P. Schmuki. 2009. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. Journal of the American Chemical Society 131 (12):4230–2.
  • Subramania, A., G. V. Kumar, A. R. Sathiya Priya, and T. Vasudevan. 2007. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires. Nanotechnology 18 (22):225601. doi:10.1088/0957-4484/18/22/225601.
  • Tang, Z.-X., X.-J. Fang, Z.-L. Zhang, T. Zhou, X.-Y. Zhang, and L.-E. Shi. 2012. Nanosize MgO as antibacterial agent: preparation and characteristics. Brazilian Journal of Chemical Engineering 29 (4):775–81. doi:10.1590/S0104-66322012000400009.
  • Thakkar, K. N., S. S. Mhatre, and R. Y. Parikh. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 6 (2):257–62. doi:10.1016/j.nano.2009.07.002.
  • Thakur, S., and N. Karak. 2014. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Materials Chemistry and Physics 144 (3):425–32. doi:10.1016/j.matchemphys.2014.01.015.
  • Uddin, I., S. Adyanthaya, A. Syed, K. Selvaraj, A. Ahmad, and P. Poddar. 2008. Structure and microbial synthesis of Sub-10 nm Bi2O3 nanocrystals. Journal of Nanoscience and Nanotechnology 8 (8):3909–13. doi:10.1166/jnn.2008.179.
  • Umar, A. A., M. Y. A. Rahman, R. Taslim, M. M. Salleh, and M. Oyama. 2011. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process. Nanoscale Research Letters 6 (1):1.
  • Venkateswarlu, S., Y. S. Rao, T. Balaji, B. Prathima, and N. V. V. Jyothi. 2013. Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Materials Letters 100:241–4. doi:10.1016/j.matlet.2013.03.018.
  • Wang, Z. 2013. Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry & Engineering 1 (12):1551–4. doi:10.1021/sc400174a.
  • Were, P. S., W. Waudo, H. S. Ozwara, and H. L. Kutima. 2015. Phytochemical analysis of Warburgia ugandensis sparague using Fourier transform Infra-Red (FT-IR) spectroscopy. International Journal of Pharmacognosy and Phytochemical Research 7 (2):201–5.
  • Xiao, K., Y. Li, J. Luo, J. S. Lee, W. Xiao, A. M. Gonik, R. G. Agarwal, and K. S. Lam. 2011. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32 (13):3435–46.
  • Xiong, H.-M. 2014. “ZnO nanoparticles for drug delivery.” Sino-German Symposium on Colloid and Interface Materials, Germany.
  • Yang, M., J. Wang, C. Xiao, and H. Zhao. 2016. Microwave enhanced preparation of MgO nanoparticles. Integrated Ferroelectrics 172 (1):1–9. doi:10.1080/10584587.2016.1175255.
  • Yu, J., C.-X. Shan, Q. Qiao, X.-H. Xie, S.-P. Wang, Z.-Z. Zhang, and D.-Z. Shen. 2012. Enhanced responsivity of photodetectors realized via impact ionization. Sensors (Basel, Switzerland) 12 (2):1280–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.