309
Views
8
CrossRef citations to date
0
Altmetric
ARTICLES

Charging effect on separation performance of outer vortex type cyclone for submicron particles at different operating parameters

, , , &
Pages 596-604 | Received 31 Jul 2018, Accepted 15 Jan 2019, Published online: 04 Mar 2019

References

  • Arendt, P., and H. Kallmann. 1926. Concerning the discharge mechanism of a particle cloud. Zeitschrift Fur Physikalische 35:421–41. doi:10.1007/BF01385419.
  • Bhasker, C. 2011. Flow simulation in Electro-Static-Precipitator (ESP) ducts with turning vanes. Advances Engineering Software 42 (7):501–12. doi:10.1016/j.advengsoft.2011.04.002.
  • Boericke, R. R. 1980. Electrocyclone development program, Quarterly technical report, Aug.–Oct. 1980 General Electric Co. Vol. 1. Schenectady, NY: Energy Systems Programs Dept.
  • Chen, C.-J., and L. F. S. Wang. 2001. Cost-benefit analysis of electrocyclone and cyclone. Resources Conservation and Recycling 31 (4):285–92. doi:10.1016/S0921-3449(00)00086-0.
  • Choi, K. J., and B. Delcorio. 1990. Generation of controllable monodispersed sprays using impulse jet and charging techniques. Review of Scientific Instruments 61 (6):1689–93. doi:10.1063/1.1141133.
  • Chuah, T. G., J. Gimbun, and T. S. Y. Choong. 2006. A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technology 162 (2):126–32. doi:10.1016/j.powtec.2005.12.010.
  • Elsayed, K., and C. Lacor. 2011. The effect of cyclone inlet dimensions on the flow pattern and performance. Applied Mathematical Modelling 35 (4):1952–68. doi:10.1016/j.apm.2010.11.007.
  • Fan, P. P., M. Q. Fan, and A. Liu. 2015. Using an axial electromagnetic field to improve the separation density of a dense medium cyclone. Minerals Engineering 72:87–93. doi:10.1016/j.mineng.2014.12.037.
  • Galich, R. V., A. R. Yakuba, V. I. Sklabinskii, and V. Y. Storozhenko. 2014. Development and application of counter swirling flow vortex dust collectors. Chemical and Petroleum Engineering 50 (3–4):156–61. doi:10.1007/s10556-014-9872-3.
  • Hirabayashi, A., and J. F. D. L. Mora. 1998. Charged droplet formation in sonic spray. International Journal of Mass Spectrometry and Ion Processes 175 (3):277–82. doi:10.1016/S0168-1176(98)00129-3.
  • Hsu, C.-W., S.-H. Huang, C.-W. Lin, T.-C. Hsiao, W.-Y. Lin, and C.-C. Chen. 2014. An experimental study on performance improvement of the stairmand cyclone design. Aerosol and Air Quality Research 14 (3):1003–16. doi:10.4209/aaqr.2013.04.0129.
  • Kachi, M., and L. Dascalescu. 2014. Corona discharges in asymmetric electrode configurations. Journal of Electrostatics 72 (1):6–12. doi:10.1016/j.elstat.2013.11.001.
  • Khalkhali, A., and H. Safikhani. 2012. Pareto based multi-objective optimization of a cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms. Engineering. Optimization 44 (1):105–18. doi:10.1080/0305215X.2011.564619.
  • Kubannek, F., and U. Krewer. 2016. A cyclone flow cell for quantitative analysis of kinetics at porous electrodes by differential electrochemical mass spectrometry. Electrochimica Acta. 210:862–73. doi:10.1016/j.electacta.2016.05.212.
  • Li, J. W., and W. J. Cai. 2008. Numerical simulation of flow velocity distribution in cyclone with impulse electrostatic excitation. Journal of Electrostatics 66 (7–8):438–44. doi:10.1016/j.elstat.2008.04.005.
  • Lim, K. S., H. S. Kim, and K. W. Lee. 2004. Comparative performances of conventional cyclones and a double cyclone with and without an electric field. Journal of Aerosol Science 35 (1):103–16. doi:10.1016/j.jaerosci.2003.07.001.
  • Lim, K. S., K. W. Lee, and M. R. Kuhlman. 2001. An experimental study of the performance factors affecting particle collection efficiency of the electrocyclone. Aerosol Science Technology 35 (6):969–77. doi:10.1080/027868201753306732.
  • Liu, B. Y. H., and H. Yeh. 1968. On the theory of charging of aerosol particles in an electric field. Journal Applied Physics 39 (3):1396–402. doi:10.1063/1.1656368.
  • Mainelis, G., K. Willeke, P. Baron, S. Grinshpun, and T. Reponen. 2002. Induction charging and electrostatic classification of micrometer-size particles for investigatin the electrobiological properties of airborne microorganisms. Aerosol Science Technology 36 (4):479–91. doi:10.1080/027868202753571304.
  • Ma, Z., Y. H. Zheng, Y. N. Cheng, S. Xie, X. Y. Ye, and M. S. Yao. 2016. Development of an integrated microfluidic electrostatic sampler for bioaerosol. Journal of Aerosol Science 95:84–94. doi:10.1016/j.jaerosci.2016.01.003.
  • Nenu, R. K. T., Y. Hayase, H. Yoshida, and T. Yamamoto. 2010. Influence of inlet flow rate, pH, and beads mill operating condition on separation performance of sub-micron particles by electrical hydrocyclone. Advance Powder Technology 21:246–55. doi:10.1016/j.apt.2009.11.010.
  • Novikov, L. M., V. T. Stefanenko, K. L. Novikov, and N. V. Inyushkin. 2011. A new design of electrostatic cyclone for fine cleaning of gas. Khimicheskoe Neftegazov Mashinostroenie 1:37–40.
  • Oglesby, S., and G. B. Nichols. 1978. Electrostatic precipitation [M]. New York. Marcel Dekker INC.
  • Plucinsk, I. J., L. Gradon, and J. Nowicki. 1989. Collection of aerosol particles in a cyclone with an external electric field. Journal of Aerosol Science 20:695–700. doi:10.1016/0021-8502(89)90058-X.
  • Raoufi, A., M. Shams, M. Farzaneh, and R. Ebrahimi. 2008. Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chemical Engineering Processing: Process Intensification 47 (1):128–37. doi:10.1016/j.cep.2007.08.004.
  • Shrimpton, J. S., and R. I. Crane. 2001. Small electrocyclone performance. Chemical Engineering and Technology 24 (9):951–5. doi:10.1002/1521-4125(200109)24:9<951::AID-CEAT951>3.0.CO;2-9.
  • Skodras, G., S. P. Kaldis, D. Sofialidis, O. Faltsi, P. Grammelis, and G. P. Sakellaropoulos. 2006. Particulate removal via electrostatic precipitators-CFD simulation. Fuel Processing Technolog 87 (7):623–31. doi:10.1016/j.fuproc.2006.01.012.
  • Tan, T. H., and F. Z. Liang. 1984. Ventilation in industry and dust removal technology [M]. Beijing: China Architecture and Building Press.
  • Titov, A. 2015. The impact of re-entrainment on the electrocyclone effectiveness. Separation and Purification Technology 156:795–802. doi:10.1016/j.seppur.2015.11.004.
  • Titov, A. G., Z. R. Gilvanova, N. V. Inyushkin, A. Aitova, I. Shhelchkov, I. P. N. A. Tokareva, M. G. Mankov, and S. A. Perfilov. 2014. Elektrocyclone hydrodynamic flow computation. Chimica Techno Acta 1 (1):21–5. doi:10.15826/chimtech.2014.1.1.680.
  • Titov, A. G., Z. R. Gil’vanova, N. V. Inyushkin, S. A. Ermakov, I. P. Shchelchkov, A. I. Aitova, M. G. Man’kov, N. A. Tokareva, and S. A. Perfilov. 2014. Efficiency of electrostatic cyclone operation. Chemical and Petroleum Engineering 49 (9–10):655–9. doi:10.1007/s10556-014-9814-0.
  • Titov, A. G., Z. R. Gil’vanova, N. V. Inyushkin, A. A. Bir, M. K. Masnaviev, E. A. Shevchenko, P. A. Dergachev, and V. V. Korobochkin. 2015. Reduction of re-entrainment in an electrostatic precipitator by installation of shaped elements. Chemical and Petroleum Engineering 51 (1–2):77–83. doi:10.1007/s10556-015-0003-6.
  • Tsai, R., and A. F. Mills. 1995. A model of particle re-entrainment in electrostatic precipitators. Journal of Aerosol Science 2:227–39. doi:10.1016/0021-8502(94)00102-5.
  • Xiang, R. B., and K. W. Lee. 2001. Exploratory study on cyclones of modified designs. Particulate Science and Technology 19 (4):327–38. doi:10.1080/02726350290057868.
  • Xiang, R., S. H. Park, and K. W. Lee. 2001. Effects on cone dimension on cyclone performance. Journal of Aerosol Science 32 (4):549–61. doi:10.1016/S0021-8502(00)00094-X.
  • Xu, X.,. C. Zheng, P. Yan, W. Z. Zhu, Y. Wang, X. Gao, Z. Y. Luo, M. J. Ni, and K. F. Cen. 2016. Effect of electrode configuration on particle collection in a high-temperature electrostatic precipitator. Separation and Purification Technology 166:157–63. doi:10.1016/j.seppur.2016.04.039.
  • Yang, L. F., J. H. Wang, J. Wang, and K. Y. Xu. 2006. Experimental investigations on the effects of discharge-electrode configurations on electrostatic-cyclone performance. Energy Research and Information-China 22:63–8. doi:10.13259/j.cnki.eri.2006.02.001.
  • Yan, P., C. Zheng, G. Xiao, X. Xu, X. Gao, Z. Luo, and K. Cen. 2015. Characteristics of negative DC corona discharge in a wire-plate configuration at high temperatures. Separation and Purification Technology 139 (5−13):5. doi:10.1016/j.seppur.2014.10.026.
  • Yan, P., C. H. Zheng, W. Z. Zhu, X. Xu, X. Gao, Z. Y. Luo, M. J. Ni, and K. Cen. 2016. An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs. Applied Energy 164 (9):28–35. doi:10.1016/j.apenergy.2015.11.040.
  • Yin, J. 2016. Study on performance and flow field simulation of a new type precipitator. International Conference on Machinery, Materials, Environment, Biotechnology and Computer, Tianjin, China 88:1293–6. doi:10.2991/mmebc-16.2016.264.
  • Yoshida, H., K. Fukui, W. Pratarn, and W. Tanthapanichakoon. 2006. Particle separation performance by use of electrical hydro-cyclone. Separation and Purification Technology 50 (3):330–5. doi:10.1016/j.seppur.2005.12.015.
  • Yoshida, H., Y. Hayase, K. Fukui, and T. Yamamoto. 2012. Effect of conical length on separation performance of Sub-micron particles by electrical hydro-cyclone. Powder Technology 219:29–36. doi:10.1016/j.powtec.2011.12.002.1
  • Zhang, J., D. Xu, J. Ren, H. Wu, and W. Pan. 2015. Modeling and simulation of PM2.5 collection efficiency in a wire-plate ESP subjected to magnetic field and diffusion charging. Environmental Progress and Sustainable Energy 34 (3):697–702. doi:10.1002/ep.12052.
  • Zhang, J. P., Z. T. Zha, P. Che, H. L. Ding, and W. G. Pan. 2018. Influences of inlet height and velocity on main performances in the cyclone separator. Particulate Science and Technology 2:1–8. doi:10.1080/02726351.2018.1423589.
  • Zheng, C. H., Z. Y. Shen, Q. Y. Chang, Q. F. Su, X. B. Zhu, and X. Gao. 2017. Experimental study on electrostatic precipitation of low-resistivity high-carbon fly ash at high temperature. Energy and Fuels 31 (6):6266–73. doi:10.1021/acs.energyfuels.7b00107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.