399
Views
18
CrossRef citations to date
0
Altmetric
ARTICLES

Synthesis, characterisation and thermal conductivity of CuO - water based nanofluids with different dispersants

, , &
Pages 559-567 | Received 21 Sep 2018, Accepted 23 Jan 2019, Published online: 06 Apr 2019

Reference

  • Agarwal, R., K. Verma, N. K. Agrawal, R. K. Duchaniya, and R. Singh. 2016. Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Applied Thermal Engineering 102:1024–36. doi:10.1016/j.applthermaleng.2016.04.051.
  • Anandan, D., and K. S. Rajan. 2012. Synthesis and stability of cupric oxide-based nanofluid: A novel coolant for efficient cooling. Asian Journal of Scientific Research 5 (4):218–27. doi:10.3923/ajsr.2012.218.227.
  • Assael, M. J., I. N. Metaxa, J. Arvanitidis, D. Christofilos, and C. Lioutas. 2005. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. International Journal of Thermophysics 26 (3):647–64. doi:10.1007/s10765-005-5569-3.
  • Chakraborty, S., I. Sarkar, D. K. Behera, S. K. Pal, and S. Chakraborty. 2017. Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid. Powder Technology 307:10–24. doi:10.1016/j.powtec.2016.11.016.
  • Choi, S. U., and J. A. Eastman. 1995. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29, Argonne National Lab., IL, United States.
  • Chon, C. H., K. D. Kihm, S. P. Lee, and S. U. S. Choi. 2005. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters 87 (15):1–3. https://doi.org/10.1063/1.2093936.
  • Das, P. K., N. Islam, A. K. Santra, and R. Ganguly. 2017. Experimental investigation of thermophysical properties of Al2O3 – water nano fluid: Role of surfactants. Journal of Molecular Liquids 237:304–12. doi:10.1016/j.molliq.2017.04.099.
  • Das, P. K., A. K. Mallik, R. Ganguly, and A. K. Santra. 2016. Synthesis and characterization of TiO2-Water nanofluids with different surfactants. International Communications in Heat and Mass Transfer 75:341–8. doi:10.1016/j.icheatmasstransfer.2016.05.011.
  • Das, D., B. C. Nath, P. Phukon, and S. K. Dolui. 2013. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces. B, Biointerfaces 101:430–3. doi:10.1016/j.colsurfb.2012.07.002.
  • Faraji, A. H., and P. Wipf. 2009. Nanoparticles in cellular drug delivery. Bioorganic and Medicinal Chemistry 17 (8):2950–62. doi:10.1016/j.bmc.2009.02.043.
  • Ghadimi, A., R. Saidur, and H. S. C. Metselaar. 2011. A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer. 54 (17–18):4051–68. doi:10.1016/j.ijheatmasstransfer.2011.04.014.
  • Hrenovic, J., J. Milenkovic, N. Daneu, R. Matonickin, and N. Rajic. 2012. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere 88 (9):1103–7. doi:10.1016/j.chemosphere.2012.05.023.
  • Ismail, R. A., A. K. Ali, M. M. Ismail, and K. I. Hassoon. 2011. Preparation and characterization of colloidal ZnO nanoparticles using nanosecond laser ablation in water. Applied Nanoscience 1 (1):45–9. doi:10.1007/s13204-011-0006-3.
  • Jabbar, A., I. Qasim, M. Mumtaz, and K. Nadeem. 2015. Synthesis and superconductivity of (Ag)x/CuTl-1223 composites. Progress in Natural Science: Materials International 25 (3):204–8. doi:10.1016/j.pnsc.2015.06.001.
  • Jiang, H., H. Li, C. Zan, F. Wang, Q. Yang, and L. Shi. 2014. Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochimica Acta 579C:27–30. doi:10.1016/j.tca.2014.01.012.
  • Jiang, H., Q. Xu, C. Huang, and L. Shi. 2015. Effect of temperature on the effective thermal conductivity of n-tetradecane-based nanofluids containing copper nanoparticles. Particuology 22C:95–9. doi:10.1016/j.partic.2014.10.010.
  • Jiang, H., Q. Zhang, and L. Shi. 2015. Effective thermal conductivity of carbon nanotube-based nanofluid. Journal of the Taiwan Institute of Chemical Engineers 55C:76–81. doi:10.1016/j.jtice.2015.03.037.
  • Kamila, S., and V. R. Venugopal. 2017. Acoustics and rheological studies of aqueous ethylene glycol blend copper oxide nanofluids. Particulate Science and Technology 6351:1–10. doi:10.1080/02726351.2017.1346736.
  • Karthikeyan, N. R., J. Philip, and B. Raj. 2008. Effect of clustering on the thermal conductivity of nanofluids. Materials Chemistry and Physics 109 (1):50–5. doi:10.1016/j.matchemphys.2007.10.029.
  • Koczkur, K. M., S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak. 2015. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions 44 (41):17883–905. doi:10.1039/C5DT02964C.
  • Kong, L., J. Sun, and Y. Bao. 2017. Preparation, characterization and tribological mechanism of nanofluids. RSC Advances 7 (21):12599–609. doi:10.1039/C6RA28243A.
  • Li, W., Y. Bu, H. Jin, J. Wang, W. Zhang, S. Wang, and J. Wang. 2013. The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy & Fuels 27 (10):6304–10. doi:10.1021/ef401190b.
  • Li, C., and G. P. Peterson. 2007. The effect of particle size on the effective thermal conductivity of Al2O3-Water nanofluids. Journal of Applied Physics 101 (4):044321–5. doi:10.1063/1.2436472.
  • Li, X. F., D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao, and H. Li. 2008. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochimic Acta 469 (1–2):98–103. doi:10.1016/j.tca.2008.01.008.
  • Manimaran, R., K. Palaniradja, N. Alagumurthi, S. Sendhilnathan, and J. Hussain. 2014. Preparation and characterization of copper oxide nanofluid for heat transfer applications. Applied Nanoscience 4 (2):163–7. doi:10.1007/s13204-012-0184-7.
  • Mingzheng, Z., X. Guodong, L. Jian, C. Lei, and Z. Lijun. 2012. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Experimental Thermal and Fluid Science 36:22–9. doi:10.1016/j.expthermflusci.2011.07.014.
  • Mousavizadeh, S. M., G. R. Ansarifar, and M. Talebi. 2015. Assessment of the TiO2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling. Nuclear Engineering and Technology 47 (7):814–26. doi:10.1016/j.net.2015.07.001.
  • Mutuku, W. N. 2016. Ethylene glycol (EG)-based nanofluids as a coolant for automotive radiator. Asia Pacific Journal on Computational Engineering 3 (1):1–15. doi:10.1186/s40540-016-0017-3.
  • Nagarajan, P. K., J. Subramani, S. Suyambazhahan, and R. Sathyamurthy. 2014. Nanofluids for solar collector applications : A review. Energy Procedia 61:2416–34. doi:10.1016/j.egypro.2014.12.017.
  • Peng, H., G. Ding, and H. Hu. 2011. Effect of surfactant additives on nucleate Pool boiling heat transfer of refrigerant-based nanofluid. Experimental Thermal and Fluid Science 35 (6):960–70. doi:10.1016/j.expthermflusci.2011.01.016.
  • Ran, Q., P. Somasundaran, C. Miao, J. Liu, S. Wu, and J. Shen. 2009. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions. Journal of Colloid and Interface Science 336 (2):624–33. doi:10.1016/j.jcis.2009.04.057.
  • Saleh, R., N. Putra, R. E. Wibowo, W. N. Septiadi, and S. P. Prakoso. 2014. Titanium dioxide nanofluids for heat transfer applications. Experimental Thermal and Fluid Science 52:19–29. doi:10.1016/j.expthermflusci.2013.08.018.
  • Solangi, K. H., S. N. Kazi, M. R. Luhur, A. Badarudin, A. Amiri, R. Sadri, M. N. M. Zubir, S. Gharehkhani, K. H. Teng. 2015. A comprehensive review of thermo-physical properties and convective heat transfer to nano fluids. Energy 89:1065–86. doi:10.1016/j.energy.2015.06.105.
  • Wang, X. J., D. S Zhu, and S. Yang. 2009. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chemical Physics Letters. 470 (1–3):107–11. doi:10.1016/j.cplett.2009.01.035.
  • Waser, O., M. Hess, A. Güntner, P. Novák, and S. E. Pratsinis. 2013. Size controlled CuO nanoparticles for Li-Ion batteries. Journal of Power Sources 241:415–22. doi:10.1016/j.jpowsour.2013.04.147.
  • Wusiman, K., H. Jeong, K. Tulugan, H. Afrianto, and H. Chung. 2013. Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS. International Communications in Heat and Mass Transfer 41:28–33. doi:10.1016/j.icheatmasstransfer.2012.12.002.
  • Xia, G., H. Jiang, R. Liu, and Y. Zhai. 2014. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-Ionized water nanofluids. International Journal of Thermal Sciences 84:118–24. doi:10.1016/j.ijthermalsci.2014.05.004.
  • Yang, L., K. Du, and X.-S. Zhang. 2012. Influence factors on thermal conductivity of ammonia-water nanofluids. Journal of Central South University 19 (6):1622–8. doi:10.1007/s11771-012-1185-0.
  • Yu, W., H. Xie, L. Chen, and Y. Li. 2010. Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles. Powder Technology 197 (3):218–21. doi:10.1016/j.powtec.2009.09.016.
  • Zhou, K., R. Wang, B. Xu, and Y. Li. 2006. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 17 (15):3939–43. doi:10.1088/0957-4484/17/15/055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.