417
Views
17
CrossRef citations to date
0
Altmetric
Articles

Design of an activated carbon equipped-cyclone separator and its performance on particulate matter removal

&
Pages 694-702 | Received 17 Aug 2018, Accepted 10 Apr 2019, Published online: 05 May 2019

References

  • Agranovski, I. E., S. Moustafa, and R. D. Braddock. 2005. Performance of activated carbon loaded fibrous filters on simultaneous removal of particulate and gaseous pollutants. Environmental Technology 26 (7):757–66. doi:10.1080/09593332608618516.
  • Ahmed, E., K.-H. Kim, Z.-H. Shon, and S.-K. Song. 2015. Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmospheric Environment 101:125–33. doi:10.1016/j.atmosenv.2014.11.024.
  • Altmann, J., D. Rehfeld, K. Träder, A. Sperlich, and M. Jekel. 2016. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Research 92:131–9. doi:10.1016/j.watres.2016.01.051.
  • Avci, A., and I. Karagoz. 2003. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. Journal of Aerosol Science 34 (7):937–55. doi:10.1016/S0021-8502(03)00054-5.
  • Aygün, A., S. Yenisoy-Karakaş, and I. Duman. 2003. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials 66 (2–3):189–95. doi:10.1016/j.micromeso.2003.08.028.
  • Bari, M. A., and W. B. Kindzierski. 2016 . Fine particulate matter (PM2.5) in Edmonton, Canada: Source apportionment and potential risk for human health. Environmental Pollution (Barking, Essex: 1987) 218:219–29. doi:10.1016/j.envpol.2016.06.014.
  • Bénesse, M., L. Le Coq, and C. Solliec. 2006. Collection efficiency of a woven filter made of multifiber yarn: Experimental characterization during loading and clean filter modeling based on a two-tier single fiber approach. Journal of Aerosol Science 37 (8):974–89. doi:10.1016/j.jaerosci.2005.10.003.
  • Burnett, R. T., M. Smith-Doiron, D. Stieb, S. Cakmak, and J. R. Brook. 1999. Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Archives of Environmental Health: An International Journal 54(2):130–9. doi:10.1080/00039899909602248.
  • Ciambelli, P., G. Matarazzo, V. Palma, P. Russo, E. M. Borla, and M. F. Pidria. 2007. Reduction of soot pollution from automotive diesel engine by ceramic foam catalytic filter. Topics in Catalysis 42 (1–4):287–91. doi:10.1007/s11244-007-0193-z.
  • Danmaliki, G. I., and T. A. Saleh. 2016. Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels. Journal of Cleaner Production 117:50–5. doi:10.1016/j.jclepro.2016.01.026.
  • de Nevers, N. 2000. Air pollution control engineering. 2nd Edition. Boston, MA: McGraw-Hill Science/Engineering/Math,
  • El-Batsh, H. M. 2013. Improving cyclone performance by proper selection of the exit pipe. Applied Mathematical Modelling 37 (7):5286–303. doi: 10.1016/j.apm.2012.10.044.
  • Elsayed, K., and C. Lacor. 2011. The effect of cyclone inlet dimensions on the flow pattern and performance. Applied Mathematical Modelling 35 (4):1952–68.
  • Funk, P. A. 2015. Reducing cyclone pressure drop with evasés. Powder Technology 272:276–81. doi:10.1016/j.powtec.2014.12.019.
  • Funk, P. A., K. Elsayed, K. M. Yeater, G. A. Holt, and D. P. Whitelock. 2015. Could cyclone performance improve with reduced inlet velocity? Powder Technology 280:211–8. doi:10.1016/j.powtec.2015.04.026.
  • Funk, P. A., G. A. Holt, and D. P. Whitelock. 2014. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate. Journal of Aerosol Science 74:26–35. doi:10.1016/j.jaerosci.2014.04.001.
  • Gangupomu, R. H., M. L. Sattler, and D. Ramirez. 2016. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities. Journal of Hazardous Materials 302:362–74. doi:10.1016/j.jhazmat.2015.09.002.
  • Gaur, V., R. Asthana, and N. Verma. 2006. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O. Carbon 44 (1):46–60. doi:10.1016/j.carbon.2005.07.012.
  • Guan, B., R. Zhan, H. Lin, and Z. Huang. 2015. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. Journal of Environmental Management 154:225–58. doi:10.1016/j.jenvman.2015.02.027.
  • Haghighat, F., C.-S. Lee, B. Pant, G. Bolourani, N. Lakdawala, and A. Bastani. 2008. Evaluation of various activated carbons for air cleaning–Towards design of immune and sustainable buildings. Atmospheric environment 42 (35):8176–84. doi:10.1016/j.atmosenv.2008.07.061.
  • Hayashi, T., T. G. Lee, M. Hazelwood, E. Hedrick, and P. Biswas. 2000. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture. Journal of the Air & Waste Management Association 50 (6):922–9. doi:10.1080/10473289.2000.10464136.
  • Hong, C., T. Nakamura, Y. Asako, and I. Ue 2016. Semi-local friction factor of turbulent gas flow through rectangular microchannels. International Journal of Heat and Mass Transfer 98:643–9. doi:10.1016/j.ijheatmasstransfer.2016.02.080.
  • Ibhadode, O. O., E. O. B. Ogedengbe, and M. A. Rosen. 2017. Performance characterization of gas-solid cyclone for separation of particle from syngas produced from food waste gasifier plant. European Journal of Sustainable Development Research 1 (2):13. doi:10.20897/ejosdr/63224.
  • Ioannidou, O., and A. Zabaniotou. 2007. Agricultural residues as precursors for activated carbon production—a review. Renewable and Sustainable Energy Reviews 11 (9):1966–2005. doi:10.1016/j.rser.2006.03.013.
  • Kandasamy, J., S. Vigneswaran, T. T. L. Hoang, and D. N. S. Chaudhary. 2009. Adsorption and biological filtration in wastewater treatment. Waste Water Treatment Technologies I:173.
  • Karagoz, I., and A. Avci. 2005. Modelling of the pressure drop in tangential inlet cyclone separators. Aerosol Science and Technology 39 (9):857–65. doi:10.1080/02786820500295560.
  • Kim, K.-H., E. Kabir, and S. Kabir. 2015. A review on the human health impact of airborne particulate matter. Environment International 74:136–43. doi:10.1016/j.envint.2014.10.005.
  • Lee, S.-Y., and T. K. Ghosh. 2002. Environmental tobacco smoke removal capability of activated carbon. Chemical Engineering Communications 189 (4):436–47. doi:10.1080/00986440212087.
  • Lu, X., C. Lin, Y. Li, T. Yao, J. C. Fung, and A. K. Lau. 2017. Assessment of health burden caused by particulate matter in southern China using high-resolution satellite observation. Environment International 98:160–70. doi:10.1016/j.envint.2016.11.002.
  • Marcazzan, G. M., S. Vaccaro, G. Valli, and R. Vecchi. 2001. Characterisation of PM10 and PM2. 5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment 35 (27):4639–50. doi:10.1016/S1352-2310(01)00124-8.
  • Muller, C. O., H. Yu, and B. Zhu. 2015. Ambient air quality in China: The impact of particulate and gaseous pollutants on IAQ. Procedia Engineering 121:582–9. doi:10.1016/j.proeng.2015.08.1037.
  • Muñoz-Boado, M. M., and E. B. Caldona. 2017. Gypsum-reinforced zeolite composite for particulate matter reduction from vehicular emissions. Journal of Environmental Chemical Engineering 5 (3):2631–8. doi:10.1016/j.jece.2017.05.003.
  • Nasiri, A., and M. Abdolzadeh. 2017. Effect of baffle arrangement and inlet air velocity on particulate removal efficiency of a gravitational settling chamber in a coke-making plant. International Journal of Coal Preparation and Utilization :1–26. doi:10.1080/19392699.2017.1333114.
  • Peng, B., Z. Liu, L. Chai, H. Liu, S. Yang, B. Yang, K. Xiang, and C. Liu. 2017. Effect of copper ions on the mercury re-emission in a simulated wet scrubber. Fuel 190:379–85.
  • Rathore, R. S., D. K. Srivastava, A. K. Agarwal, and N. Verma. 2010. Development of surface functionalized activated carbon fiber for control of NO and particulate matter. Journal of Hazardous Materials 173 (1–3):211–22. doi:10.1016/j.jhazmat.2009.08.071.
  • Saha, D., N. Mirando, and A. Levchenko. 2018. Liquid and vapor phase adsorption of BTX in lignin derived activated carbon: Equilibrium and kinetics study. Journal of Cleaner Production 182:372–8. doi:10.1016/j.jclepro.2018.02.076.
  • Sayem, A. S. M., M. M. K. Khan, M. G. Rasul, M. T. O. Amanullah, and N. M. S. Hassan. 2015. Effects of baffles on flow distribution in an electrostatic precipitator (ESP) of a coal based power plant. Procedia Engineering 105:529–36. doi:10.1016/j.proeng.2015.05.086.
  • Sayğılı, H., and F. Güzel. 2016. High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: Process optimization, characterization and dyes adsorption. Journal of Cleaner Production 113:995–1004. doi:10.1016/j.jclepro.2015.12.055.
  • Schauer, J. J., W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. Simoneit. 2007. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 41:241–59. doi:10.1016/j.atmosenv.2007.10.069.
  • Shah, I. K., P. Pre, and B. J. Alappat. 2014. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances. Journal of the Taiwan Institute of Chemical Engineers 45 (4):1733–8. doi:10.1016/j.jtice.2014.01.006.
  • Shanmuganathan, S., M. A. Johir, T. V. Nguyen, J. Kandasamy, and S. Vigneswaran. 2015. Experimental evaluation of microfiltration–granular activated carbon (MF–GAC)/nano filter hybrid system in high quality water reuse. Journal of Membrane Science 476:1–9. doi:10.1016/j.memsci.2014.11.009.
  • Shapiro, S. S., and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52 (3–4):591–611. doi:10.2307/2333709.
  • Shepherd, C. B., and C. E. Lapple. 1940. Flow pattern and pressure drop in cyclone dust collectors cyclone without intel vane. Industrial & Engineering Chemistry 32 (9):1246–8. doi:10.1021/ie50369a042.
  • Song, Y., X. Wang, B. A. Maher, F. Li, C. Xu, X. Liu, X. Sun, and Z. Zhang. 2016. The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China. Journal of Cleaner Production 112:1312–8. doi:10.1016/j.jclepro.2015.05.006.
  • Tamai, H., K. Shiraki, T. Shiono, and H. Yasuda. 2006. Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine. Journal of Colloid and Interface Science 295(1):299–302. doi:10.1016/j.jcis.2005.08.012.
  • Taylor, R. 1990. Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography 6 (1):35–9. doi:10.1177/875647939000600106.
  • Teo, E. Y. L., L. Muniandy, E.-P. Ng, F. Adam, A. R. Mohamed, R. Jose, and K. F. Chong. 2016. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta 192:110–9. doi:10.1016/j.electacta.2016.01.140.
  • Titos, G., H. Lyamani, M. Pandolfi, A. Alastuey, and L. Alados-Arboledas. 2014. Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment. Atmospheric Environment 89:593–602. doi:10.1016/j.atmosenv.2014.03.001.
  • United States Environmental Protection Agency. 2016a. Particulate matter (PM) basics. (Accessed September 12, 2019) https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
  • United States Environmental Protection Agency. 2016b. Monitoring by control technique–electrified filter bed. (Accessed September 30, 2019) https://www.epa.gov/air-emissions-monitoring-knowledge-base/monitoring-control-technique-electrified-filter-bed
  • United States Environmental Protection Agency. 2018a. Air pollution control technology fact sheet: Settling chambers. (Accessed February 23, 2019). https://nepis.epa.gov/Exe/ZyNET.exe/P100RQ5T.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru + 2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000036%5CP100RQ5T.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  • United States Environmental Protection Agency. 2018b. Air pollution control technology fact sheet: Fabric filter. (Accessed February 23, 2019) https://www3.epa.gov/ttnchie1/mkb/documents/ff-pulse.pdf
  • United States Environmental Protection Agency. 2018c. Monitoring by control technique–Electrostatic Precipitator. (Accessed February 23, 2019) https://www.epa.gov/air-emissions-monitoring-knowledge-base/monitoring-control-technique-electrostatic-precipitators
  • Vehlow, J. 2015. Air pollution control systems in WtE units: An overview. Waste Management (New York, N.Y.) 37:58–74. doi:10.1016/j.wasman.2014.05.025.
  • Wark, K., and C. F. Warner. 1981. Air pollution: Its origin and control. 2nd Edition. New York, NY: Harper and Row,
  • Yang, C.-M., and K. Kaneko. 2002. Nitrogen-doped activated carbon fiber as an applicant for NO adsorbent. Journal of Colloid and Interface Science 255 (2):236–40.
  • Yao, Y., V. Velpari, and J. Economy. 2014. Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel 116:560–5. doi:10.1016/j.fuel.2013.08.063.
  • Zaiontz, C. 2018. Shapiro-Wilk original test. Real statistics using Excel. (Accessed 01 June, 2018). http://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/shapiro-wilk-test/
  • Zhang, S., E. Worrell, and W. Crijns-Graus. 2015. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Applied Energy 147 :192–213. doi:10.1016/j.apenergy.2015.02.081.
  • Zhang, S., E. Worrell, W. Crijns-Graus, F. Wagner, and J. Cofala. 2014. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry. Energy 78:333–45. doi:10.1016/j.energy.2014.10.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.