185
Views
6
CrossRef citations to date
0
Altmetric
Articles

Preparation and optimization of Vitamin E acetate liposomes using a modified RESS process combined with response surface methodology

, , , &

Reference

  • Akbarzadeh, A., R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki. 2013. Liposome: Classification, preparation, and applications. Nanoscale Research Letters 8(1):102. doi:10.1186/1556-276X-8-102.
  • Barry, B. 2002. Drug delivery routes in skin: A novel approach. Advanced Drug Delivery Reviews 54:S31–S40. doi:10.1016/S0169-409X(02)00113-8.
  • Batzri, S., and E. D. Korn. 1973. Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta 298(4):1015–9. doi:10.1016/0005-2736(73)90408-2.
  • Bayat, A., B. Larijani, S. Ahmadian, H. E. Junginger, and M. Rafiee-Tehrani. 2008. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomedicine-Nanotechnology Biology and Medicine 4(2):115–20. doi:10.1016/j.nano.2008.01.003.
  • Beckman, E. J. 2004. Supercritical and near-critical CO2 in green chemical synthesis and processing. Journal of Supercritical Fluids 28(2–3):121–91. doi:10.1016/S0896-8446(03)00029-9.
  • Chen, C.-T., C.-A. Le, M. Tang, and Y.-P. Chen. 2017. Experimental investigation for the solubility and micronization of pyridin-4-amine in supercritical carbon dioxide. Journal of CO2 Utilization 18:173–80. doi:10.1016/j.jcou.2017.01.020.
  • Cheng, J., S. Han, J. Song, W. Wang, and Z. Jiao. 2018. Solubility of Vitamin E acetate in supercritical carbon di-oxide with ethanol as cosolvent. Journal of Chemical & Engineering Data 63(11):4248–55. doi:10.1021/acs.jced.8b00745.
  • Commission, C. 2010. Pharmacopoeia of the people's republic of China. Beijing: China Medical Science Press.
  • Duan, D., B. Su, H. Xing, Y. Su, Y. Yang, and Q. Ren. 2013. Solubilities of novel ethylene oxide diphosphate-based chelating agents in supercritical carbon dioxide. Fluid Phase Equilibria 355:1–7. doi:10.1016/j.fluid.2013.06.035.
  • Dwi, M. Y., J. Julian, J. N. Putro, A. T. Nugraha, Y.-H. Ju, N. Indraswati, and S. Ismadji. 2016. Solubility of acetophenone in supercritical carbon dioxide. The Open Chemical Engineering Journal 10(1):18–28. doi:10.2174/1874123101610010018.
  • Fan, H., G. Liu, Y. Huang, Y. Li, and Q. Xia. 2014. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol. Applied Surface Science 288:193–200. doi:10.1016/j.apsusc.2013.10.006.
  • Frederiksen, L., K. Anton, P. van Hoogevest, H. R. Keller, and H. Leuenberger. 1997. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. Journal of Pharmaceutical Sciences 86(8):921–8. doi:10.1021/js960403q.
  • Ghoreishi, S. M., A. Hedayati, and M. Kordnejad. 2016. Micronization of chitosan via rapid expansion of supercritical solution. Journal of Supercritical Fluids 111:162–70. doi:10.1016/j.supflu.2016.01.005.
  • Han, S., W. Wang, Z. Jiao, and X. Wei. 2017. Solubility of Vitamin E acetate in supercritical carbon dioxide: Measurement and correlation. Journal of Chemical & Engineering Data 62(11):3854–60. doi:10.1021/acs.jced.7b00550.
  • Jiao, Z., X. Wang, S. Han, X. Zha, and J. Xia. 2019. Preparation of vitamin C liposomes by rapid expansion of supercritical solution process: Experiments and optimization. Journal of Drug Delivery Science and Technology 51:1–6. doi:10.1016/j.jddst.2019.02.015.
  • Johnson, N. R., T. Ambe, and Y. Wang. 2014. Lysine-based polycation: Heparin coacervate for controlled protein delivery. Acta Biomaterialia 10(1):40–6. doi:10.1016/j.actbio.2013.09.012.
  • Karn, P. R., W. Cho, H. J. Park, J. S. Park, J. Hwang. 2013. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: Comparison with the modified conventional Bangham method. International Journal of Nanomedicine 8:365–77. doi:10.2147/ijn.s39025.
  • Khansary, M. A., F. Amiri, A. Hosseini, A. H. Sani, and H. Shahbeig. 2015. Representing solute solubility in supercritical carbon dioxide: A novel empirical model. Chemical Engineering Research & Design 93:355–65. doi:10.1016/j.cherd.2014.05.004.
  • Li, Y., Y. Q. Huang, H. F. Fan, and Q. Xia. 2014. Heat-resistant sustained-release fragrance microcapsules. Journal of Applied Polymer Science 131:2540. doi:10.1002/app.40053.
  • Li, J., Z. Huang, J. Wei, and L. Xu. 2013. A new optimization method for parameter determination in modeling solid solubility in supercritical CO2. Fluid Phase Equilibria 344:117–24. doi:10.1016/j.fluid.2013.01.028.
  • Liu, Y., D. Liu, L. Zhu, Q. Gan, and L. Le. 2015. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Research International 74:97–105. doi:10.1016/j.foodres.2015.04.024.
  • Manosroi, A., R. Chutoprapat, M. Abe, and J. Manosroi. 2008. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. International Journal of Pharmaceutics 352(1–2):248–55. doi:10.1016/j.ijpharm.2007.10.013.
  • Matsumoto, S., M. Kohda, and S. I. Murata. 1977. Preparation of lipid vesicles on the basis of a technique for providing w/o/w emulsions. Journal of Colloid and Interface Science 62(1):149–57. doi:10.1016/0021-9797(77)90076-5.
  • Montes, A., R. Merino, D. M. De los Santos, C. Pereyra, and E. J. Martinez de la Ossa. 2017. Micronization of vanillin by rapid expansion of supercritical solutions process. Journal of CO2 Utilization 21:169–76. doi:10.1016/j.jcou.2017.07.009.
  • Ochiuz, L., C. Grigoras, M. Popa, I. Stoleriu, C. Munteanu, D. Timofte, L. Profire, and A. G. Grigoras. 2016. Alendronate-loaded modified drug delivery lipid particles intended for improved oral and topical administration. Molecules 21(7):858. doi:10.3390/molecules21070858.
  • Otake, K., T. Imura, H. Sakai, and M. Abe. 2001. Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir 17(13):3898–901. doi:10.1021/la010122k.
  • Rane, S. S., and P. Choi. 2005. Polydispersity index: How accurately does it measure the breadth of the molecular weight distribution? Chemistry of Materials 17(4):926. doi:10.1021/cm048594i.
  • Sonavane, G., K. Tomoda, and K. Makino. 2008. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids and Surfaces B-Biointerfaces 66(2):274–80. doi:10.1016/j.colsurfb.2008.07.004.
  • Tsai, W.-C., and S. S. H. Rizvi. 2016. Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends in Food Science & Technology 55:61–71. doi:10.1016/j.tifs.2016.06.012.
  • Türk, M., and D. Bolten. 2016. Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). Journal of Supercritical Fluids 116:239–50. doi:10.1016/j.supflu.2016.06.001.
  • Wang, F., L. Chen, S. Jiang, J. He, X. Zhang, J. Peng, Q. Xu, and R. Li. 2014. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design. Journal of Liposome Research 24(3):171–81. doi:10.3109/08982104.2014.891231.
  • Wang, Y., R. N. Dave, and R. Pfeffer. 2004. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. Journal of Supercritical Fluids 28(1):85–99. doi:10.1016/S0896-8446(03)00011-1.
  • Wang, Y. W., C. H. Jou, C. C. Hung, and M. C. Yang. 2012. Cellular fusion and whitening effect of a chitosan derivative coated liposome. Colloids and Surfaces B-Biointerfaces 90:169–76. doi:10.1016/j.colsurfb.2011.10.024.
  • Wang, H., M. Liu, and S. Du. 2014. Optimization of madecassoside liposomes using response surface methodology and evaluation of its stability. International Journal of Pharmaceutics 473(1–2):280–85. doi:10.1016/j.ijpharm.2014.07.010.
  • Wang, X., C. Wang, X. Zha, Y. Mei, J. Xia, and Z. Jiao. 2017. Supercritical carbon dioxide extraction of β-carotene and α-tocopherol from pumpkin: A Box–Behnken design for extraction variables. Analytical Methods 9(2):294–303. doi:10.1039/C6AY02862D.
  • Weinstein, R. D., W. H. Hanlon, J. P. Donohue, M. Simeone, A. Rozich, and K. R. Muske. 2007. Solubility of felodipine and nitrendipine in liquid and supercritical carbon dioxide by cloud point and UV spectroscopy. Journal of Chemical & Engineering Data 52(1):256–60. doi:10.1021/je0603729.
  • Wen, Z., B. Liu, Z. Zheng, X. You, Y. Pu, and Q. Li. 2010a. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chemical Engineering Research & Design 88:1102–7. doi:10.1016/j.cherd.2010.01.020.
  • Wen, Z., X. You, B. Liu, Z. Zheng, Y. Pu, and Q. Li. 2010b. Application of an improved RESS process for Atractylodes macrocephala Koidz volatile oil liposomes production, Bioinformatics and Biomedical Engineering (iCBBE). 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 1–4. ISBN: 978-1-4244-4713-8.
  • Wolff, S., S. Beuermann, and M. Türk. 2016. Impact of rapid expansion of supercritical solution process conditions on the crystallinity of poly(vinylidene fluoride) nanoparticles. Journal of Supercritical Fluids 117:18–25. doi:10.1016/j.supflu.2016.07.013.
  • Xia, F., D. Hu, H. Jin, Y. Zhao, and J. Liang. 2012. Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocolloids 26(2):456–63. doi:10.1016/j.foodhyd.2010.11.014.
  • Xiong, Y., W. Chen, J. Ma, Z. Chen, and A. Zeng. 2015. Methods to delay deactivation of zeolites on furan acylation: Continuous liquid-phase technology and solvent effects. RSC Advances 5(125):103695–702. doi:10.1039/C5RA16139H.
  • Xiong, Y., D. Guo, L. Wang, X. Zheng, Y. Zhang, and J. Chen. 2009. Development of nobiliside A loaded liposomal formulation using response surface methodology. International Journal of Pharmaceutics 371(1–2):197–203. doi:10.1016/j.ijpharm.2008.12.031.
  • Xu, S., B. Zhao, and D. He. 2015. Synthesis of highly dispersed nanoscaled CoQ10 liposome by supercritical fluid. Materials Letters 142:283–6. doi:10.1016/j.matlet.2014.12.070.
  • Yamini, Y., M. Hojjati, P. Kalantarian, M. Moradi, A. Esrafili, and A. Vatanara. 2012. Solubility of capecitabine and docetaxel in supercritical carbon dioxide: Data and the best correlation. Thermochimica Acta 549 :95–101. doi:10.1016/j.tca.2012.09.010.
  • Zhang, Q., C. Ou, S. Ye, X. Song, and S. Luo. 2017. Construction of nanoscale liposomes loaded with melatonin via supercritical fluid technology. Journal of Microencapsulation 34(7):687–98. doi:10.1080/02652048.2017.1376001.
  • Zhang, W., Y. Sun, Y. Li, R. Shen, H. Ni, and D. Hu. 2012. Preparation and influencing factors of sirolimus liposome by supercritical fluid. Artificial Cells Blood Substitutes and Biotechnology 40(1–2):62–65. doi:10.3109/10731199.2011.585618.
  • Zhao, G. D., R. Sun, S. L. Ni, and Q. Xia. 2015. Development and characterisation of a novel chitosan-coated antioxidant liposome containing both coenzyme Q10 and alpha-lipoic acid. Journal of Microencapsulation 32(2):157–65. doi:10.3109/02652048.2014.973072.
  • Zhao, L., and F. Temelli. 2015. Preparation of liposomes using a modified supercritical process via depressurization of liquid phase. Journal of Supercritical Fluids 100:110–20. doi:10.1016/j.supflu.2015.02.022.
  • Zhao, L., and F. Temelli. 2017. Preparation of anthocyanin-loaded liposomes using an improved supercritical carbon dioxide method. Innovative Food Science & Emerging Technologies 39:119–28. doi:10.1016/j.ifset.2016.11.013.
  • Zhao, S., and D. Zhang. 2014. An experimental investigation into the solubility of Moringa oleifera oil in supercritical carbon dioxide. Journal of Food Engineering 138:1–10. doi:10.1016/j.jfoodeng.2014.03.031.
  • Zhong, M., B. Han, J. Ke, H. K. Yan, and D. Y. Peng. 1998. A model for correlating the solubility of solids in supercritical CO2. Fluid Phase Equilibria 146(1–2):93–102. doi:10.1016/S0378-3812(98)00207-6.
  • Zhou, K., Y. Liu, C. Pan, and J. Yi. 2012. Solubility and micronization of DL-2-phenoxypropionic acid in supercritical CO2. Journal of Chemical & Engineering Data 57(3):856–61. doi:10.1021/je200661p.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.