271
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of bubble plume on liquid phase flow structures using PIV

, , , &

References

  • Abbassi, W., S. Besbes, M. Elhajem, H. B. Aissia, and J. Y. Champagne. 2018. Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF). Computers and Fluids 161:47–59. doi:10.1016/j.compfluid.2017.11.010.
  • Abbassi, W., S. Besbes, M. El Hajem, H. Ben Aissia, J. Y. Champagne, and J. Jay. 2017. Influence of operating conditions and liquid phase viscosity with volume of fluid method on bubble formation process. European Journal of Mechanics B/Fluids 65:284–98. doi:10.1016/j.euromechflu.2017.04.001.
  • Aoyama, S., K. Hayashi, S. Hosokawa, and A. Tomiyama. 2016. Shapes of ellipsoidal bubbles in infinite stagnant liquids. International Journal of Multiphase Flow 79:23–30. doi:10.1016/j.ijmultiphaseflow.2015.10.003.
  • Besagni, G., P. Brazzale, A. Fiocca, and F. Inzoli. 2016. Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes. Flow Measurement and Instrumentation 52:190–207. doi:10.1016/j.flowmeasinst.2016.10.008.
  • Besagni, G., A. Di Pasquali, L. Gallazzini, E. Gottardi, L. Pietro, M. Colombo, and F. Inzoli. 2017. The effect of aspect ratio in counter-current gas-liquid bubble columns: Experimental results and gas holdup correlations. International Journal of Multiphase Flow 94:53. doi:10.1016/j.ijmultiphaseflow.2017.04.015.
  • Besagni, G., and F. Inzoli. 2016a. Comprehensive experimental investigation of counter current bubble column hydrodynamics: Holdup, flow regime transition, bubble size distributions and local flow properties. Chemical Engineering Sciences 146:256–90.
  • Besagni, G., and F. Inzoli. 2016b. Influence of internals on counter-current bubble column hydrodynamics: Holdup, flow regime transition and local flow properties. Chemical Engineering Sciences. 145:162–80. doi:10.1016/j.ces.2016.02.019.
  • Besagni, G., F. Inzoli, G. De Guido, and L. A. Pellegrini. 2017. The dual effect of viscosity on bubble column hydrodynamics. Chemical Engineering Sciences 158:509–38. doi:10.1016/j.ces.2016.11.003.
  • Besagni, G., F. Inzoli, T. Ziegenhein, and D. Lucas. 2016. Computational fluid-dynamic modeling of the pseudo-homogeneous flow regime in large-scale bubble columns, Chemical Engineering Sciences 160:144–60. doi:10.1016/j.ces.2016.11.031.
  • Besbes, S., M. El Hajem, H. Ben Aissia, J. Y. Champagne, and J. Jay. 2015. PIV measurements and Eulerian-Lagrangian simulations of the unsteady gas-liquid flow in a needle sparger rectangular bubble column. Chemical Engineering Sciences. 126:560–72. doi:10.1016/j.ces.2014.12.046.
  • Cheng, W., Y. Murai, T. Sasaki, and F. Yamamoto. 2005. Bubble velocity measurement with a recursive cross correlation PIV technique. Flow Measurement and Instrumentation 16 (1):35–46. doi:10.1016/j.flowmeasinst.2004.08.002.
  • De Vries, J., S. Luther, and D. Lohse. 2002. Induced bubble shape oscillations and their impact on the rise velocity. The European Physical Journal B 29 (3):503–9. doi:10.1140/epjb/e2002-00332-5.
  • Deen, N. G., and B. H. Hjertager. 2002. Particle image velocimetry measurements in an aerated stirred tank. Chemical Engineering Communications 189 (9):1208–21. doi:10.1080/00986440213881.
  • Ellingsen, K., and F. Risso. 2001. On the rise of an ellipsoidal bubble in water: Oscillatory paths and liquid-induced velocity. Journal of Fluid Mechanics 440:235–68. doi:10.1017/S0022112001004761.
  • Grace, J. R., T. Wairegi, and T. H. Nguyen. 1976. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Transactions of the Institution of Chemical Engineers 54 (3):167–73.
  • Han, W., Z. Zhen-Yu, Y. Yong-Ming, and Z. Hui-Sheng. 2010. Viscosity effects on the behavior of a rising bubble. Journal of Hydrodynamics 22 (1):81–9.
  • Hanafizadeh, P., J. Eshraghi, E. Kosari, and W. H. Ahmed. 2015. The effect of gas properties on bubble formation growth and detachment. Particulate Science and Technology: An International Journal 33 (6):645–51.
  • Karn, A., C. Ellis, R. Arndt, and J. Hong. 2015. An integrative image measurement technique for dense bubbly flows with a wide size distribution. Chemical Engineering Sciences 122:240–9. doi:10.1016/j.ces.2014.09.036
  • Kolmogorov, A. N. 1941. Dissipation of energy in locally isotropic turbulence. Doklady Akademiia Nauk SSSR 32:16–8.
  • Kracht, W., and J. A. Finch. 2010. Effect of frother on initial bubble shape and velocity. International Journal of Mineral Processing 94 (3–4):115–20. doi:10.1016/j.minpro.2010.01.003.
  • Lau, Y. M., K. T. Sujatha, M. Gaeini, N. G. Deen, and J. A. M. Kuipers. 2013. Experimental study of the bubble size distribution in a pseudo-2D bubble column. Chemical Engineering Sciences 98:203–11. doi:10.1016/j.ces.2013.05.024.
  • Liu, Z., and L. Baokuan. 2018. Scale-adaptive analysis of Euler-Euler large Eddy simulation for laboratory scale dispersed bubbly flows. Chemical Engineering Journal 338:465–77. doi:10.1016/j.cej.2018.01.051.
  • Liu, L.,. H. Yan, and G. Zhao. 2015. Experimental studies on the shape and motion of air bubbles in viscous liquids. Experimental Thermal and Fluid Science 62:109–21. doi:10.1016/j.expthermflusci.2014.11.018.
  • Liu, Z., Y. Zheng, L. Jia, and Q. Zhang. 2005. Study of bubble induced flow structure using PIV. Chemical Engineering Sciences 60 (13):3537–52. doi:10.1016/j.ces.2004.03.049.
  • Ma, T., D. Lucas, T. Ziegenhein, J. Frohlich, and N. G. Deen. 2015. Scale-adaptive simulation of a square cross-sectioned bubble column. Chemical Engineering Sciences 131:101–8. doi:10.1016/j.ces.2015.03.047.
  • Majumder, S. K. 2016. Hydrodynamics and transport processes of inverse bubbly flow, eBook ISBN: 9780128032886.
  • Mikaelian, D., A. Larcy, S. Dehaeck, and B. Haut. 2013. A new experimental method to analyze the dynamics and the morphology of bubbles in liquids: Application to single ellipsoidal bubbles. Chemical Engineering Sciences 100:529–38. doi:10.1016/j.ces.2013.04.013.
  • Mudde, R. F., W. K. Harteveld, and H. E. A. van den Akker. 2009. Uniform flow in bubble columns. Industrial and Engineering Chemistry Research 48:148–58. doi:10.1021/ie8000748.
  • Nedeltchev, S. 2015. New methods for flow regime identification in bubble columns and fluidized beds. Chemical Engineering Sciences 137:436–46. doi:10.1016/j.ces.2015.06.054.
  • Oguz, H. N., and A. Prosperetti. 1993. Dynamics of bubble growth and detachment from a needle. Journal of Fluid Mechanics 257 (1):111–45. doi:10.1017/S0022112093003015.
  • Pereira and M. I. DIAS. 1999. Bubble formation at a multiple orificeplate submerged in quiescent liquid. Thesis, University of Brussels, Applied Sciences.
  • Pourtousi, M., P. Ganesan, and J. N. Sahu. 2015. Effect of bubble diameter size on prediction of flow pattern in Euler-Euler simulation of homogeneous bubble column regime. Measurement 76:255–70. doi:10.1016/j.measurement.2015.08.018.
  • Ramakrishnan, S., R. Kumar, and R. Kuloor. 1969. Studies in bubble formation-I: Bubble formation under constant flow conditions. Chemical Engineering Sciences 24 (4):731–47. doi:10.1016/0009-2509(69)80065-5.
  • Sathe, M., J. Joshi, and G. Evans. 2013. Characterization of turbulence in rectangular bubble column. Chemical Engineering Sciences 100 (30):52–68. doi:10.1016/j.ces.2013.01.004.
  • Sharaf, S., M. Zednikova, M. C. Ruzicka, and B. J. Azzopardi. 2016. Global and local hydrodynamics of bubble columns-Effect of gas distributor. Chemical Engineering Journal 288:489–504. doi:10.1016/j.cej.2015.11.106.
  • Sivaiah, M., and S. K. Majumder. 2013. Dispersion characteristics of liquid in a modified gas liquid-solid three-phase down flow bubble column. Particulate Science Technology: An International Journal 31 (3):210–20. doi:10.1080/02726351.2012.694400.
  • Wilkinson, P. M., A. P. Spek, and L. L. van Dierendonck. 1992. Design parameters estimation for scale-up of high pressure bubble columns. Aiche Journal 38 (4):544–54. doi:10.1002/aic.690380408.
  • Wu, M., and M. Gharib. 2002. Experimental studies on the shape and path of small air bubbles rising in clean water. Physics of Fluids 14 (7):L49–L52. doi:10.1063/1.1485767.
  • Yang, N., J. Chen, H. Zhao, W. Ge, and J. Li. 2007. Explorations on the multi-scale flow structure and stability condition in bubble columns. Chemical Engineering Sciences 62 (24):6978–91. doi:10.1016/j.ces.2007.08.034.
  • Zahradník, J., M. Fialová, M. Ru˚žička, J. Drahosˇ, F. Kasˇtánek, and N. H. Thomas. 1997. Thomas, Duality of the gas liquid flow regimes in bubble column reactors. Chemical Engineering Sciences 52 (21–22):3811–26. doi:10.1016/S0009-2509(97)00226-1.
  • Zhongchun, L., S. Xiaoming, J. Shengyao, and Y. Jiyang. 2014. Numerical investigation on lateral migration and lift force of single bubble in simple shear flow in low viscosity fluid using volume of fluid method. Nuclear Engineering and Design 274:154–63. doi:10.1016/j.nucengdes.2014.04.011.
  • Ziegenhein, T., and D. Lucas. 2016. On sampling bias in multiphase flows: Particle image velocimetry in bubbly flows. Flow Measurement and Instrumentation 48:36–41. doi:10.1016/j.flowmeasinst.2016.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.