275
Views
5
CrossRef citations to date
0
Altmetric
Articles

Fluidization of forest biomass-sand mixtures: experimental evaluation of minimum fluidization velocity and CFD modeling

, , , & ORCID Icon

References

  • Acosta-Iborra, A., C. Sobrino, F. Hernández-Jiménez, and M. de Vega. 2011. Experimental and computational study on the bubble behavior in a 3-D fluidized bed. Chemical Engineering Science 66 (15):3499–512. doi:10.1016/j.ces.2011.04.009.
  • Asegehegn, T. W., M. Schreiber, and H. J. Krautz. 2011. Numerical study of bubbling gas-solid fluidized beds hydrodynamics: Influence of immersed horizontal tubes and data analysis. International Journal of Chemical Reactor Engineering 9 (1):A16. doi:10.1515/1542-6580.2391.
  • Asegehegn, T. W., M. Schreiber, and H. J. Krautz. 2012. Influence of two- and three dimensional simulations on bubble behavior in gas–solid fluidized beds with and without immersed horizontal tubes. Powder Technology 219:9–19. doi:10.1016/j.powtec.2011.11.050.
  • Askaripour, H., and A. M. Dehkordi. 2015. Simulation of 3D freely bubbling gas–solid fluidized beds using various drag models: TFM approach. Chemical Engineering Research and Design 100:377–90. doi:10.1016/j.cherd.2015.05.041.
  • ASTM. 1979. Standard test method for α-cellulose in wood. Philadelphia, PA: ASTM International.
  • ASTM. 1983. Standard test method for lignin in wood. ASTM D 1106-56, ASTM International, West Conshohocken, PA.
  • ASTM. 1998. Standard test method for volatile matter in the analysis of particulate wood fuels. ASTM-E872-82, ASTM International, West Conshohocken, PA.
  • ASTM. 2001. Standard test method for ash in wood. ASTM-D1102–84, ASTM International, West Conshohocken, PA.
  • ASTM. 2012. Standard test method for measuring the minimum fluidization velocity of free flow powders. Philadelphia, PA: ASTM International.
  • Baeyens, J., and D. Geldart. 1980. Modelling approach to the effect of equipment scale on fluidised bed heat transfer data. Journal of Powder & Bulk Solids Technology 4 (4):1.
  • Basu, P. 2010. Biomass gasification and pyrolisis, practical design and theory. 1st ed. Waltham, MA: Academic Press.
  • Bell, R. A. 2000. Numerical modelling of multi-particle flows in bubbling gas–solid fluidized beds. Licentiate Thesis., Swinburne University of Technology.
  • Busciglio, A., G. Vella, G. Micale, and L. Rizzuti. 2009. Analysis of the bubbling behaviour of 2D gas-solid fluidized beds Part II. Comparison between experiments and numerical simulations via digital image analysis technique. Chemical Engineering Journal 148 (1):145–63. doi:10.1016/j.cej.2008.11.010.
  • Cardoso, J., V. Silva, D. Eusébio, P. Brito, R. Boloy, L. Tarelho, and J. Silveira. 2019. Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor. Renewable Energy. 131:713–29. doi:10.1016/j.renene.2018.07.080.
  • Channiwala, S. A., and P. P. Parikh. 2002. Unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81 (8):1051–63. doi:10.1016/S0016-2361(01)00131-4.
  • Chiba, S., T. Chiba, A. W. Nienow, and H. Kobayashi. 1979. The minimum fluidization velocity, bed expansion and pressure-drop profile of binary particle mixtures. Powder Technology 22 (2):255–69. doi:10.1016/0032-5910(79)80031-5.
  • Clarke, K., T. Pugsley, and G. Hill. 2005. Fluidization of moist sawdust in binary particle systems in a gas-solid fluidized bed. Chemical Engineering Science 60 (24):6909–18. doi:10.1016/j.ces.2005.06.004.
  • Cloete, S., S. T. Johansen, and S. Amini. 2013. Investigation into the effect of simulating a 3D cylindrical fluidized bed reactor on a 2D plane. Powder Technology 239:21–35. doi:10.1016/j.powtec.2013.01.036.
  • Cornelissen, J. T., F. Taghipour, R. Escudié, N. Ellis, and J. R. Grace. 2007. CFD modeling of a liquid-solid fluidized bed. Chemical Engineering Science 62 (22):6334–48. doi:10.1016/j.ces.2007.07.014.
  • Dai, J., J. Saayman, J. R. Grace, and N. Ellis. 2015. Gasification of Woody Biomass. Annual Review of Chemical and Biomolecular Engineering 6:77–99.
  • Demirbas, A. 2004. Effects of temperature and particle size on bio-charyield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2):243–8. doi:10.1016/j.jaap.2004.07.003.
  • Deza, M., N. Franka, T. Heindel, and F. Battaglia. 2009. CFD Modeling and X-ray imaging of biomass in a fluidized bed. Journal of Fluids Engineering 131 (11):111303. doi:10.1115/1.4000257.
  • Di Maio, F., A. Di Renzo, and V. Vivacqua. 2012. A particle segregation model for gas-fluidization of binary mixtures. Powder Technology 226:180–8. doi:10.1016/j.powtec.2012.04.040.
  • Esmaili, E., and N. Mahinpey. 2009. 3D Eulerian simulation of a gas-solid bubbling fluidized bed: Assessment of drag coefficient correlations. WIT Transactions on Engineering Sciences 63: 3–13. doi:10.2495/MPF090011.
  • Felizardo, M. P., and J. T. Freire. 2018. Characterization of barley grains in different levels of pearling process. Journal of Food Engineering 232:29–35. doi:10.1016/j.jfoodeng.2018.03.017.
  • Fernandez, A., G. Mazza, and R. Rodriguez. 2018. Thermal decomposition under oxidative atmosphere of lignocellulosic wastes: Different kinetic methods application. Journal of Environmental Chemical Engineering 6 (1):404–15. doi:10.1016/j.jece.2017.12.013.
  • Fernandez, A., J. Soria, R. Rodriguez, J. Baeyens, and G. D. Mazza. 2019. Macro-TGA steam-assisted gasification of lignocellulosic wastes. Journal of Environmental Management 233:626–35.
  • García-Gutierrez, L. M., F. Hernández-Jiménez, E. Cano-Pleite, and A. Soria-Verdugo. 2017. Improvement of the simulation of fuel particles motion in a fluidized bed by considering wall friction. Chemical Engineering Journal 321:175–83. doi:10.1016/j.cej.2017.03.109.
  • Geldart, D. 1973. Types of gas fluidization. Powder Technology 7 (5):285–92. doi:10.1016/0032-5910(73)80037-3.
  • Gidaspow, D., M. Syamlal, and Y. Seo. 1986. Hydrodynamics of fluidization of single and binary size particles: Supercomputer modelling. Paper presented at the Fifth Engineering Foundation Conference on Fluidization, Elsinore, Denmark. May 18–23.
  • Gidaspow, D., and R. Bezburuah and J. Ding. 1992. Hydrodynamics of circulating fluidized beds, Kinetic Theory approach. Paper presented at the Seventh Engineering Foundation Conference on Fluidization, Brisbane, Australia, May 3–8.
  • Girimonte, R., B. Formisani, and V. Vivacqua. 2019. Application of the theory of binary fluidization to solids of irregular shape: Choosing the granulometry of sand in processes for energy production from wastes of the olive oil industry. Powder Technology 345:563–70. doi:10.1016/j.powtec.2019.01.054.
  • Herzog, N., M. Schreiber, C. Egbers, and H. J. Krautz. 2012. A comparative study of different CFD-codes for numerical simulation of gas–solid fluidized bed hydrodynamics. Computers & Chemical Engineering 39:41–6. doi:10.1016/j.compchemeng.2011.12.002.
  • Hosseini, S. H., G. Ahmadi, R. Rahimi, M. Zivdar, and M. N. Esfahany. 2010. CFD studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds. Powder Technology 200 (3):202–15. doi:10.1016/j.powtec.2010.02.024.
  • Kunii, D., and O. Levenspiel. 2013. Fluidization Engineering. 2nd ed. Boston, MA: Butterworth-Heinemann.
  • Li, T. 2015. Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds. Powder Technology 286:817–27. doi:10.1016/j.powtec.2015.09.033.
  • Li, T., S. Benyahia, J. F. Dietiker, J. Musser, and X. Sun. 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science 123:236–46. doi:10.1016/j.ces.2014.11.022.
  • Liu, Y., X. Lan, C. Xu, G. Wang, and J. Gao. 2012. CFD simulation of gas and solids mixing in FCC strippers. AIChE Journal 58 (4):1119–32. doi:10.1002/aic.12646.
  • Lun, C. K. K., S. B. Savage, D. J. Jeffrey, and N. Chepurniy. 1984. Kinetic theories for granular flow: Ineslastic particles in couette flow and slightly inlestaic particles in a general flowfield. Journal of Fluid Mechanics 140 (1):223–56. doi:10.1017/S0022112084000586.
  • Ma, H., and Y. Zhao. 2018. CFD-DEM investigation of the fluidization of binary mixtures containing rod-like particles and spherical particles in a fluidized bed. Powder Technology 336:533–45. doi:10.1016/j.powtec.2018.06.034.
  • McKendry, P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology 83 (1):37–46. doi:10.1016/S0960-8524(01)00118-3.
  • Ogawa, S., A. Umemura, and N. Oshima. 1980. On the equation of fully fluidized granular materials. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 31 (4):483–93. doi:10.1007/BF01590859.
  • Oliveira, P., T. Cardoso, and C. Ataíde. 2013. Bubbling fluidization of biomass and sand binary mixtures: Minimum fluidization velocity and particle segregation. Chemical Engineering and Processing: Process Intensification 72:113–21. doi:10.1016/j.cep.2013.06.010.
  • Owoyemi, O., L. Mazzei, and P. Lettieri. 2007. CFD modeling of binary‐fluidized suspensions and investigation of role of particle–particle drag on mixing and segregation. AIChE Journal 53 (8):1924–40. doi:10.1002/aic.11227.
  • Paudel, B., and Z. Feng. 2013. Prediction of minimum fluidization velocity for binary mixtures of biomass and inert particles. Powder Technology 237:134–40. doi:10.1016/j.powtec.2013.01.031.
  • Proenza Pérez, N., D. Travieso, E. Blanco, J. Santana, R. Verdú, and J. Silveira. 2017. Fluid dynamic study of mixtures of sugarcane bagasse and sand particles: Minimun fluidization velocity. Biomass and Bioenergy 107:135–49. doi:10.1016/j.biombioe.2017.08.015.
  • Rao, T., and J. V. Bheemarasetti. 2001. Minimum fluidization velocities of mixtures of biomass and sands. Energy 26:633–44.
  • Reuge, N., L. Cadoret, C. Coufort-Saudejaud, S. Pannala, M. Syamlal, and B. Caussat. 2008. Multifluid Eurelian Modeling of dense gas-solids fluidized bed hydrodynamics: Influence of the dissipation parameters. Chemical Engineering Science 63 (22):5540–51. doi:10.1016/j.ces.2008.07.028.
  • Rhodes, M. 1998. Introduction to particle technology. 1st ed. Chichester, UK: John Wiley&Sons.
  • Rowe, P. N., and A. W. Nienow. 1975. Minimum fluidization velocity of multi-component particle mixtures. Chemical Engineering Science 30 (11):1365–9. doi:10.1016/0009-2509(75)85066-4.
  • Sant’Anna, M. C. S., W. R. dos Santos Cruz, G. F. da Silva, R. de Andrade Medronho, and S. Lucena. 2017. Analyzing the fluidization of a gas-sand-biomass mixture using CFD techniques. Powder Technology 316:367–72. doi:10.1016/j.powtec.2016.12.023.
  • Sette, P., A. Fernandez, J. Soria, R. Rodriguez, D. Salvatori, and G. Mazza. 2020. Integral valorization of fruit waste from wine and cider industries. Journal of Cleaner Production 242:118486. doi:10.1016/j.jclepro.2019.118486.
  • Si, C., and Q. Guo. 2008. Fluidization characteristics of binary mixtures of biomass and quartz sand in an acoustic fluidized bed. Industrial & Engineering Chemistry Research 47 (23):9773–82. doi:10.1021/ie801070z.
  • Sobrino, C., A. Acosta-Iborra, M. A. Izquierdo-Barrientos, and M. de Vega. 2015. Three-dimensional two-fluid modeling of a cylindrical fluidized bed and validation of the maximum entropy method to determine bubble properties. Chemical Engineering Journal 262:628–39. doi:10.1016/j.cej.2014.10.014.
  • Solli, K., and C. Agu. 2017. Evaluation of drag models for CFD simulation of fluidized bed biomass gasification. Paper presented at the 58th Conference on Simulation and Modelling (SIMS 58), Reykjavik, Iceland, September 25–27.
  • Soria, J. M., R. Li, G. Flamant, and G. D. Mazza. 2019. Influence of pellet size on product yields and syngas composition during solar-driven high temperature fast pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 140:299–311. doi:10.1016/j.jaap.2019.04.007.
  • Syamlal, M. 1987. The particle–particle drag term in a multiparticle model of fludization. Topical Report, National Technical Information Service, Springfield, VA.
  • Taghipour, F., N. Ellis, and C. Wong. 2005. Experimental and computational study of gas-solid fluidized bed hydrodynamics. Chemical Engineering Science 60 (24):6857–67. doi:10.1016/j.ces.2005.05.044.
  • Tagliaferri, C., L. Mazzei, P. Lettieri, A. Marzocchella, G. Olivieri, and P. Salatino. 2013. CFD simulation of bubbling fluidized bidisperse mixtures: Effect of integration methods and restitution coefficient. Chemical Engineering Science 102:324–34. doi:10.1016/j.ces.2013.08.015.
  • Thapa, R. K., and B. M. Halvorsen. 2013. Study of flow behavior in bubbling fluidized bed biomass gasification reactor using CFD simulation. Paper presented at the 14th International Conference on Fluidization–From Fundamentals to Products, Noordwijkerhout, The Netherlands, May 26–31.
  • Van de Velden, M., J. Baeyens, and I. Boukis. 2008. Modeling CFB biomass pyrolysis reactors. Biomass and Bioenergy. 32 (2):128–39. doi:10.1016/j.biombioe.2007.08.001.
  • Venier, C. M., A. R. Urrutia, J. P. Capossio, J. Baeyens, and G. D. Mazza. 2020. Comparing ANSYS Fluent® and OpenFOAM® simulations of Geldart A, B and D bubbling fluidized bed hydrodynamics. International Journal of Numerical Methods for Heat and Fluid Flow 30 (1):3–118.
  • Wang, H., and Z. Zhong. 2019. A mixing behavior study of biomass particles and sands in fluidized bed based on CFD-DEM simulation. Energies 12 (9):1801.
  • Xie, N., F. Battaglia, and S. Pannala. 2008. Effects of using two- versus three-dimensional computational modeling of fluidized beds: Part I, hydrodynamics. Powder Technology 182 (1):1–13. doi:10.1016/j.powtec.2007.09.014.
  • Yang, W. C. 2003. Handbook of fluidization and fluid-particle systems. 1st ed. New York, NY: Marcel Dekker.
  • Yates, J. G. 1983. Fundamentals of fluidized-bed chemical processes. 1 st ed. London, UK: Butterworths.
  • Zhang, Y., Z. Wenqi, and B. Jin. 2011. Experimental and theoretical study on fluidization of stalk shaped biomass particle in a fluidized bed. International Journal of Chemical Reactor Engineering 9 (1):A54. doi:10.1515/1542-6580.2691.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.