279
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Antimicrobial activity of green synthesized Se nanoparticles using ginger and onion extract: a laboratory and in silico analysis

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abboud, Y., A. Eddahbi, A. El Bouari, H. Aitenneite, K. Brouzi, and J. Mouslim. 2013. Microwave-assisted approach for rapid and green phytosynthesis of silver nanoparticles using aqueous onion (Allium cepa) extract and their antibacterial activity. Journal of Nanostructure in Chemistry 3 (1):84. doi:10.1186/2193-8865-3-84.
  • Akhtar, M. S., J. Panwar, and Y.-S. Yun. 2013. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering 1 (6):591–602. doi:10.1021/sc300118u.
  • Alagesan, V., and S. Venugopal. 2019. Green synthesis of selenium nanoparticle using leaves extract of Withania Somnifera and its biological applications and photocatalytic activities. BioNanoScience 9 (1):105–16. doi:10.1007/s12668-018-0566-8.
  • Anu, K., G. Singaravelu, K. Murugan, and G. Benelli. 2017. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. Journal of Cluster Science 28 (1):551–63. doi:10.1007/s10876-016-1123-7.
  • Asamenew, G., H.-W. Kim, M.-K. Lee, S.-H. Lee, Y. J. Kim, Y.-S. Cha, S. M. Yoo, and J.-B. Kim. 2019. Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. European Food Research and Technology 245 (3):653–65. doi:10.1007/s00217-018-3188-z.
  • Beavers, W. N., A. J. Monteith, V. Amarnath, R. L. Mernaugh, L. J. Roberts, W. J. Chazin, S. S. Davies, and E. P. Skaar. 2019. Arachidonic acid kills Staphylococcus aureus through a lipid peroxidation mechanism. mBio 10 (5):e01333-19. doi:10.1128/mBio.01333-19.
  • Cárdenas-Castro, A. P., E. Alvarez-Parrilla, E. Montalvo-González, J. A. Sánchez-Burgos, K. Venema, and S. G. Sáyago-Ayerdi. 2020. Stability and anti-topoisomerase activity of phenolic compounds of Capsicum annuum “serrano” after gastrointestinal digestion and in vitro colonic fermentation. International Journal of Food Sciences and Nutrition 71 (7):826–38. doi:10.1080/09637486.2020.1734542.
  • Cardozo, T. R., R. F. De Carli, A. Seeber, W. H. Flores, J. A. N. da Rosa, Q. S. G. Kotzal, M. Lehmann, F. R. da Silva, and R. R. Dihl. 2019. Genotoxicity of zinc oxide nanoparticles: An in vivo and in silico study. Toxicology Research 8 (2):277–86. doi:10.1039/c8tx00255j.
  • Cecchi, L., F. Ieri, P. Vignolini, N. Mulinacci, and A. Romani. 2020. Characterization of volatile and flavonoid composition of different cuts of dried onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC × GC-TOF and HPLC-DAD. Molecules 25 (2):408. doi:10.3390/molecules25020408.
  • Chen, Z., Y. Shen, A. Xie, J. Zhu, Z. Wu, and F. Huang. 2009. L-cysteine-assisted controlled synthesis of selenium nanospheres and nanorods. Crystal Growth & Design 9 (3):1327–33. doi:10.1021/cg800398b.
  • Chenthamara, D., S. Subramaniam, S. G. Ramakrishnan, S. Krishnaswamy, M. M. Essa, F.-H. Lin, and M. W. Qoronfleh. 2019. Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research 23 (1):20. doi:10.1186/s40824-019-0166-x.
  • Chopra, S., and J. Reader. 2014. TRNAs as antibiotic targets. International Journal of Molecular Sciences 16 (1):321–49. doi:10.3390/ijms16010321.
  • Diko, C. S., H. Zhang, S. Lian, S. Fan, Z. Li, and Y. Qu. 2020. Optimal synthesis conditions and characterization of selenium nanoparticles in Trichoderma sp. WL-Go culture broth. Materials Chemistry and Physics 246 (May):122583. doi:10.1016/j.matchemphys.2019.122583.
  • Fardsadegh, B., H. Vaghari, R. Mohammad-Jafari, Y. Najian, and H. Jafarizadeh-Malmiri. 2019. Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Processing and Synthesis 8 (1):191–8. doi:10.1515/gps-2018-0060.
  • Gaupp, R., N. Ledala, and G. A. Somerville. 2012. Staphylococcal response to oxidative stress. Frontiers in Cellular and Infection Microbiology 2:33. doi:10.3389/fcimb.2012.00033.
  • Guisbiers, G., Q. Wang, E. Khachatryan, L. C. Mimun, R. Mendoza-Cruz, P. Larese-Casanova, T. J. Webster, and K. L. Nash. 2016. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. International Journal of Nanomedicine 11 (August):3731–6. doi:10.2147/IJN.S106289.
  • Husen, A., and K. S. Siddiqi. 2014. Plants and microbes assisted selenium nanoparticles: characterization and application. Journal of Nanobiotechnology 12 (August):28. doi:10.1186/s12951-014-0028-6.
  • Hussain, I., N. B. Singh, A. Singh, H. Singh, and S. C. Singh. 2016. Green synthesis of nanoparticles and its potential application. Biotechnology Letters 38 (4):545–60. doi:10.1007/s10529-015-2026-7.
  • Jadoun, S., R. Arif, N. K. Jangid, and R. K. Meena. 2021. Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters 19 (1):355–74. doi:10.1007/s10311-020-01074-x.
  • Khandel, P., R. Kumar Yadaw, D. Kumar Soni, L. Kanwar, and S. K. Shahi. 2018. Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. Journal of Nanostructure in Chemistry 8 (3):217–54. doi:10.1007/s40097-018-0267-4.
  • Kora, A. J., and L. Rastogi. 2016. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management 181 (October):231–6. doi:10.1016/j.jenvman.2016.06.029.
  • Korde, P., S. Ghotekar, T. Pagar, S. Pansambal, R. Oza, and D. Mane. 2020. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles – A review on plant parts involved, characterization and their recent applications. Journal of Chemical Reviews 2 (3):157–68. doi:10.22034/jcr.2020.106601.
  • Kumar, A., B. Prasad, J. Manjhi, and K. S. Prasad. 2020. Antioxidant activity of selenium nanoparticles biosynthesized using a cell-free extract of Geobacillus. Toxicological & Environmental Chemistry 102 (10):556–67. doi:10.1080/02772248.2020.1829623.
  • Kumari, P., P. Kumar Panda, E. Jha, K. Kumari, K. Nisha, M. Anwar Mallick, and S. K. Verma. 2017. Mechanistic insight to ROS and apoptosis regulated cytotoxicity inferred by green synthesized CuO nanoparticles from Calotropis gigantea to embryonic zebrafish. Scientific Reports 7 (1):16284. doi:10.1038/s41598-017-16581-1.
  • Lian, S., C. Sekyerebea Diko, Y. Yan, Z. Li, H. Zhang, Q. Ma, and Y. Qu. 2019. Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9 (6):221. doi:10.1007/s13205-019-1748-y.
  • Liang, T., X. Qiu, X. Ye, Y. Liu, Z. Li, B. Tian, and D. Yan. 2020. Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech 10 (1):23. doi:10.1007/s13205-019-1999-7.
  • Makarov, V. V., A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina. 2014. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 6 (1):35–44. doi:10.32607/20758251-2014-6-1-35-44.
  • Martínez, J. L., and F. Rojo. 2011. Metabolic regulation of antibiotic resistance. FEMS Microbiology Reviews 35 (5):768–89. doi:10.1111/j.1574-6976.2011.00282.x.
  • Martínez-Esquivias, F., M. Gutiérrez-Angulo, A. Pérez-Larios, J. Sánchez-Burgos, J. Becerra-Ruiz, and J. M. Guzmán-Flores. 2022. Anticancer activity of selenium nanoparticles in vitro studies. Anti-Cancer Agents in Medicinal Chemistry 22 (9):1658–73. September. doi:10.2174/1871520621666210910084216.
  • Martínez-Esquivias, F., J. M. Guzmán-Flores, A. Pérez-Larios, N. González Silva, and J. S. Becerra-Ruiz. 2021a. A review of the antimicrobial activity of selenium nanoparticles. Journal of Nanoscience and Nanotechnology 21 (11):5383–98. doi:10.1166/jnn.2021.19471.
  • Martínez-Esquivias, F., J. M. Guzmán-Flores, A. Pérez-Larios, J. L. Rico, and J. S. Becerra-Ruiz. 2021b. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Reviews in Medicinal Chemistry 21 (14):1798–812. doi:10.2174/1389557521666210203154024.
  • Mellinas, C., A. Jiménez, and M. D. C. Garrigós. 2019. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 24 (22):4048. doi:10.3390/molecules24224048.
  • Menon, S., K. Shrudhi Devi, H. Agarwal, and V. K. Shanmugam. 2019. Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications 29 (March):1–8. doi:10.1016/j.colcom.2018.12.004.
  • Mulla, N. A., S. V. Otari, R. A. Bohara, H. M. Yadav, and S. H. Pawar. 2020. Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters 264 (April):127353. doi:10.1016/j.matlet.2020.127353.
  • Salem, S. S., M. M. G. Fouda, A. Fouda, M. A. Awad, E. M. Al-Olayan, A. A. Allam, and T. I. Shaheen. 2021. Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. Journal of Cluster Science 32 (2):351–61. doi:10.1007/s10876-020-01794-8.
  • Schoenfelder, S. M. K., G. Marincola, T. Geiger, C. Goerke, C. Wolz, and W. Ziebuhr. 2013. Methionine biosynthesis in Staphylococcus aureus is tightly controlled by a hierarchical network involving an initiator TRNA-specific T-box riboswitch. PLoS Pathogens 9 (9):e1003606. doi:10.1371/journal.ppat.1003606.
  • Shi, X.-D., Y.-Q. Tian, J.-L. Wu, and S.-Y. Wang. 2021. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Critical Reviews in Food Science and Nutrition 61 (13):2225–12. doi:10.1080/10408398.2020.1774497.
  • Shoeibi, S., and M. Mashreghi. 2017. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology 39 (January):135–9. doi:10.1016/j.jtemb.2016.09.003.
  • Szklarczyk, D., A. Santos, C. von Mering, L. J. Jensen, P. Bork, and M. Kuhn. 2016. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Research 44 (D1):D380–384. doi:10.1093/nar/gkv1277.
  • Vahdati, M., and T. Tohidi Moghadam. 2020. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Scientific Reports 10 (1):510. doi:10.1038/s41598-019-57333-7.
  • Verma, S. K., E. Jha, P. Kumar Panda, M. Mukherjee, A. Thirumurugan, H. Makkar, B. Das, S. K. S. Parashar, and M. Suar. 2018. Mechanistic insight into ROS and neutral lipid alteration induced toxicity in the human model with fins (Danio rerio) by industrially synthesized titanium dioxide nanoparticles. Toxicology Research 7 (2):244–57. doi:10.1039/c7tx00300e.
  • Vikneshan, M., R. Saravanakumar, R. Mangaiyarkarasi, S. Rajeshkumar, S. R. Samuel, M. Suganya, and G. Baskar. 2020. Algal biomass as a source for novel oral nano-antimicrobial agent. Saudi Journal of Biological Sciences 27 (12):3753–8. doi:10.1016/j.sjbs.2020.08.022.
  • Wadhwani, S. A., M. Gorain, P. Banerjee, U. U. Shedbalkar, R. Singh, G. C. Kundu, and B. A. Chopade. 2017. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine 12:6841–55. doi:10.2147/IJN.S139212.
  • Yang, G., and S.-J. Park. 2019. Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials 12 (7):1177. doi:10.3390/ma12071177.
  • Zahran, W. E., S. M. Elsonbaty, and F. S. M. Moawed. 2017. Selenium nanoparticles with low-level ionizing radiation exposure ameliorate nicotine-induced inflammatory impairment in rat kidney. Environmental Science and Pollution Research 24 (24):19980–9. doi:10.1007/s11356-017-9558-4.
  • Zambonino, M. C., E. M. Quizhpe, F. E. Jaramillo, A. Rahman, N. Santiago Vispo, C. Jeffryes, and S. A. Dahoumane. 2021. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. International Journal of Molecular Sciences 22 (3):989. doi:10.3390/ijms22030989.
  • Zhang, D., X-l. Ma, Y. Gu, H. Huang, and G-w. Zhang. 2020. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry 8:799. doi:10.3389/fchem.2020.00799.
  • Zhang, W., J. Zhang, D. Ding, L. Zhang, L. A. Muehlmann, S.-E. Deng, X. Wang, W. Li, and W. Zhang. 2018. Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artificial Cells, Nanomedicine, and Biotechnology 46 (7):1463–70. doi:10.1080/21691401.2017.1373657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.