423
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Green synthesis of silver nanoparticles using Macrolepiota procera extract and investigation of their HSP27, HSP70, and HSP90 inhibitory potentials in human cancer cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Å Urga, S., M. P. Nanut, J. Kos, and J. Sabotič. 2017. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget 8 (16):26896–910. doi:10.18632/oncotarget.15849.
  • Acharya, D., S. Satapathy, J. J. Thathapudi, P. Somu, and G. Mishra. 2020. Biogenic synthesis of silver nanoparticles using marine algae Cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. Materials Technology. doi:10.1080/10667857.2020.1863597.
  • Acunzo, J., C. Andrieu, V. Baylot, A. So, and P. Rocchi. 2014. Hsp27 as a therapeutic target in cancers. Current Drug Targets 15 (4):423–31. doi:10.2174/13894501113146660230.
  • Ajitha, B., Y. A. K. Reddy, and P. S. Reddy. 2014. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 121:164–72. doi:10.1016/j.saa.2013.10.077.
  • Albakova, Z., and Y. Mangasarova. 2021. The HSP immune network in cancer. Frontiers in Immunology 12:1–11. doi:10.3389/fimmu.2021.796493.
  • Anusiya, G., U. Gowthama Prabu, N. V. Yamini, N. Sivarajasekar, K. Rambabu, G. Bharath and, and F. Banat. 2021. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 12 (2):11239–68. doi:10.1080/21655979.2021.2001183.
  • Arora, S., S. Goyal, J. Balani, and S. Tandon. 2013. Enhanced antiproliferative effects of aqueous extracts of some medicinal mushrooms on colon cancer cells. International Journal of Medicinal Mushrooms 15 (3):301–14. doi:10.1615/intjmedmushr.v15.i3.70.
  • Bashraheel, S. S., A. Domling, and S. K. Goda. 2020. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy] 125(May):110009. doi:10.1016/j.biopha.2020.110009.
  • Boudesco, C., S. Cause, G. Jego, and C. Garrido. 2018. Hsp70: A cancer target inside and outside the cell. Methods in Molecular Biology 1709:371–96. doi:10.1007/978-1-4939-7477-1_27.
  • Calderwood, S. K., and J. Gong. 2016. Heat shock proteins promote cancer: It's a protection racket. Trends in Biochemical Sciences 41 (4):311–23. doi:10.1016/j.tibs.2016.01.003.
  • Carneiro, B. A., and W. S. El-Deiry. 2020. Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology 17 (7):395–417. doi:10.1038/s41571-020-0341-y.
  • Chatterjee, S., and T. F. Burns. 2017. Targeting heat shock proteins in cancer: A promising therapeutic approach. International Journal of Molecular Sciences 18 (9):1978. doi:10.3390/ijms1809.
  • Chen, M.-T., W. K. Zhang, W.-L. Liang, Y.-S. Li, X.-J. Li, L.-H. Zhu, and H.-B. Tang. 2019. Controllable and extra-fast synthesis of bio-applicable silver nanoparticles with Lycium barbarum L. aqueous extract and visible light. Materials Technology 34 (10):581–91. doi:10.1080/10667857.2019.1603656.
  • Chen, H.-P., Z.-Z. Zhao, Z.-H. Li, Y. Huang, S.-B. Zhang, Y. Tang, J.-N. Yao, L. Chen, M. Isaka, T. Feng, et al. 2018. Anti-proliferative and anti-inflammatory lanostane triterpenoids from the polish edible mushroom Macrolepiota procera. Journal of Agricultural and Food Chemistry 66 (12):3146–54. doi:10.1021/acs.jafc.8b00287.
  • Chopra, H., A. Kumar Mishra, A. Amin Baig, T. Kumar Mohanta, Y. Kishore Mohanta, and K.-H. Baek. 2021. Narrative review: Bioactive potential of various mushrooms as the treasure of versatile therapeutic natural product. Journal of Fungi 7 (9):728–30. doi:10.3390/jof7090728.
  • Ciocca, D. R., and S. K. Calderwood. 2005. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones 10 (2):86–103. doi:10.1379/csc-99r.1.
  • Ćirić, A., I. Kruljević, D. Stojković, Â. Fernandes, L. Barros, R. C. Calhelha, I. C. F. R. Ferreira, M. Soković, and J. Glamočlija. 2019. Comparative investigation on edible mushrooms Macrolepiota Mastoidea, M. Rhacodes and M. Procera: Functional foods with diverse biological activities. Food & Function 10 (12):7678–86. doi:10.1039/C9FO01900F.
  • Cyran, A. M., and A. Zhitkovich. 2022. Heat shock proteins and HSF1 in cancer. Frontiers in Oncology 12:1–21. doi:10.3389/fonc.2022.860320.
  • D’Arcy, M. S. 2019. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International 43 (6):582–92. doi:10.1002/cbin.11137.
  • Elhawary, S., H. El-Hefnawy, F. A. Mokhtar, M. Sobeh, E. Mostafa, S. Osman, and M. El-Raey. 2020. Green synthesis of silver nanoparticles using extract of Jasminum Officinal l. leaves and evaluation of cytotoxic activity towards bladder (5637) and breast cancer (Mcf-7) cell lines. International Journal of Nanomedicine 15:9771–81. doi:10.2147/IJN.S269880.
  • Garibo, D., H. A. Borbón-Nuñez, J. N. D. de León, E. García Mendoza, I. Estrada, Y. Toledano-Magaña, H. Tiznado, M. Ovalle-Marroquin, A. G. Soto-Ramos, A. Blanco, et al. 2020. Green synthesis of silver nanoparticles using Lysiloma Acapulcensis exhibit high-antimicrobial activity. Scientific Reports 10 (1):12805. doi:10.1038/s41598-020-69606-7.
  • Gholami, M., F. Azarbani, and F. Hadi. 2021. Silver nanoparticles synthesised by using Iranian Mentha Pulegium leaf extract as a non-cytotoxic antibacterial agent. Materials Technology. doi:10.1080/10667857.2021.1906390.
  • Gökşen Tosun, N., Ö. Kaplan, İ. Türkekul, İ. Gökçe, and A. Özgür. 2021. Green synthesis of silver nanoparticles using Schizophyllum Commune and Geopora Sumneriana extracts and evaluation of their anticancer and antimicrobial activities. Particulate Science and Technology. doi:10.1080/02726351.2021.2010846.
  • Guilger-Casagrande, M., and R. de Lima. 2019. Synthesis of silver nanoparticles mediated by fungi: A review. Frontiers in Bioengineering and Biotechnology 7:1–16. doi:10.3389/fbioe.2019.00287.
  • Gümus, M., A. Ozgur, L. Tutar, A. Disli, I. Koca, and Y. Tutar. 2016. Design, synthesis, and evaluation of heat shock protein 90 inhibitors in human breast cancer and its metastasis. Current Pharmaceutical Biotechnology 17 (14):1231–45. doi:10.2174/1389201017666161031105815.
  • Hamouda, R. A., M. H. Hussein, R. A. Abo-Elmagd, and S. S. Bawazir. 2019. Synthesis and biological characterization of silver nanoparticles derived from the Cyanobacterium Oscillatoria Limnetica. Scientific Reports 9 (1):13071. doi:10.1038/s41598-019-49444-y.
  • Hano, C., and B. H. Abbasi. 2021. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 12 (1):31. doi:10.3390/biom12010031.
  • He, K., X. Zheng, L. Zhang, and J. Yu. 2013. Hsp90 inhibitors promote P53-dependent apoptosis through PUMA and Bax. Molecular Cancer Therapeutics 12 (11):2559–68. doi:10.1158/1535-7163.MCT-13-0284.
  • Jan, R., and G.-E.-S. Chaudhry. 2019. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Advanced Pharmaceutical Bulletin 9 (2):205–18. doi:10.15171/apb.2019.024.
  • Joly, A.-L., G. Wettstein, G. Mignot, F. Ghiringhelli, and C. Garrido. 2010. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. Journal of Innate Immunity 2 (3):238–47. doi:10.1159/000296508.
  • Jyoti, K., D. Arora, G. Fekete, L. Lendvai, G. Dogossy, and T. Singh. 2021. Antibacterial and anti-inflammatory activities of Cassia fistula fungal broth-capped silver nanoparticles. Materials Technology 36 (14):883–93. doi:10.1080/10667857.2020.1802841.
  • Kaplan, Ö., N. Gökşen Tosun, A. Özgür, S. E. Tayhan, S. Bilgin, İ. Türkekul, and İ. Gökce. 2021. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus Edulis and Coriolus Versicolor: Characterization, anticancer, antimicrobial and wound healing activities. Journal of Drug Delivery Science and Technology 64:102641. doi:10.1016/j.jddst.2021.102641.
  • Kennedy, D., R. Jäger, D. D. Mosser, and A. Samali. 2014. Regulation of apoptosis by heat shock proteins. IUBMB Life 66 (5):327–38. doi:10.1002/iub.1274.
  • Kumar, K., R. Mehra, R. P. F. Guiné, M. J. Lima, N. Kumar, R. Kaushik, N. Ahmed, A. N. Yadav, and H. Kumar. 2021. Edible mushrooms: A comprehensive review on bioactive compounds with health benefits and processing aspects. Foods 10 (12):2996. doi:10.3390/foods10122996.
  • Lampros, M., N. Vlachos, S. Voulgaris, and G. A. Alexiou. 2022. The role of Hsp27 in chemotherapy resistance. Biomedicines 10 (4):897. doi:10.3390/biomedicines10040897.
  • Lanneau, D., M. Brunet, E. Frisan, E. Solary, M. Fontenay, and C. Garrido. 2008. Heat shock proteins: Essential proteins for apoptosis regulation. Journal of Cellular and Molecular Medicine 12 (3):743–61. doi:10.1111/j.1582-4934.2008.00273.x.
  • Lanneau, D., A. de Thonel, S. Maurel, C. Didelot, and C. Garrido. 2007. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1 (1):53–60. doi:10.4161/pri.1.1.4059.
  • Li, Z., L. Jia, H. Tang, Y. Shen, and C. Shen. 2019. Synthesis and biological evaluation of geldanamycin-ferulic acid conjugate as a potent Hsp90 inhibitor. RSC Advances 9 (72):42509–15. doi:10.1039/C9RA08665J.
  • Mohammed, S. S. S., A. V. Lawrance, S. Sampath, V. Sunderam, and Y. Madhavan. 2020. Facile green synthesis of silver nanoparticles from sprouted Zingiberaceae species: Spectral characterisation and its potential biological applications. Materials Technology. doi:10.1080/10667857.2020.1863571.
  • Mohanta, Y., D. Nayak, K. Biswas, S. Singdevsachan, E. Abd_Allah, A. Hashem, A. Alqarawi, D. Yadav, and T. Mohanta. 2018. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23 (3):655. doi:10.3390/molecules23030655.
  • Mohanta, Y. K., S. K. Singdevsachan, U. K. Parida, S. K. Panda, T. K. Mohanta, and H. Bae. 2016. Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal biosphere reserve, Odisha, India. IET Nanobiotechnology 10 (4):184–9. doi:10.1049/iet-nbt.2015.0059.
  • Moradi, F., S. Sedaghat, O. Moradi, and S. Arab Salmanabadi. 2021. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants. Inorganic and Nano-Metal Chemistry 51 (1):133–42. doi:10.1080/24701556.2020.1769662.
  • Murphy, M. E. 2013. The HSP70 family and cancer. Carcinogenesis 34 (6):1181–8. doi:10.1093/carcin/bgt111.
  • Mustapha, T., N. Misni, N. R. Ithnin, A. M. Daskum, and N. Z. Unyah. 2022. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. International Journal of Environmental Research and Public Health 19 (2):674. doi:10.3390/ijerph19020674.
  • Olotu, F., E. Adeniji, C. Agoni, I. Bjij, S. Khan, A. Elrashedy, and M. Soliman. 2018. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opinion on Drug Discovery 13 (10):903–18. doi:10.1080/17460441.2018.1516035.
  • Ozen, T., C. Darcan, O. Aktop, and I. Turkekul. 2011. Screening of antioxidant, antimicrobial activities and chemical contents of edible mushrooms wildly grown in the Black Sea region of Turkey. Combinatorial Chemistry & High Throughput Screening 14 (2):72–84. doi:10.2174/138620711794474079.
  • Özgür, A. 2021. Investigation of anticancer activities of STA-9090 (Ganetespib) as a second generation HSP90 inhibitor in Saos-2 osteosarcoma cells. Journal of Chemotherapy 33 (8):554–10. doi:10.1080/1120009X.2021.1908650.
  • Özgür, A., A. Kara, N. Gökşen Tosun, Ş. Tekin, and İ. Gökçe. 2021. Debio-0932, a second generation oral Hsp90 inhibitor, induces apoptosis in MCF-7 and MDA-MB-231 cell lines. Molecular Biology Reports 48 (4):3439–49. doi:10.1007/s11033-021-06392-z.
  • Özgür, A., and Y. Tutar. 2016. Heat shock protein 90 inhibition in cancer drug discovery: From chemistry to futural clinical applications. Anti-Cancer Agents in Medicinal Chemistry 16 (3):280–90. doi:10.2174/1871520615666150821093747.
  • Park, H.-K., N. G. Yoon, J.-E. Lee, S. Hu, S. Yoon, S. Y. Kim, J.-H. Hong, D. Nam, Y. C. Chae, J. B. Park, et al. 2020. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Experimental & Molecular Medicine 52 (1):79–91. doi:10.1038/s12276-019-0360-x.
  • Raj, S., R. Trivedi, and V. Soni. 2021. Biogenic synthesis of silver nanoparticles, characterization and their applications: A review. Surfaces 5 (1):67–90. doi:10.3390/surfaces5010003.
  • Raja, S., V. Ramesh, and V. Thivaharan. 2017. Green biosynthesis of silver nanoparticles using Calliandra Haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry 10 (2):253–61. doi:10.1016/j.arabjc.2015.06.023.
  • Roufayel, R., and S. Kadry. 2019. Molecular Chaperone HSP70 and key regulators of apoptosis – a review. Current Molecular Medicine 19 (5):315–25. doi:10.2174/1566524019666190326114720.
  • Seclì, L., F. Fusella, L. Avalle, and M. Brancaccio. 2021. The dark-side of the outside: How extracellular heat shock proteins promote cancer. Cellular and Molecular Life Sciences 78 (9):4069–83. doi:10.1007/s00018-021-03764-3.
  • Secme, M., O. Kaygusuz, C. Eroglu, Y. Dodurga, O. F. Colak, and P. Atmaca. 2018. Potential anticancer activity of the parasol mushroom, Macrolepiota Procera (Agaricomycetes), against the A549 human lung cancer cell line. International Journal of Medicinal Mushrooms 20 (11):1075–86. doi:10.1615/IntJMedMushrooms.2018028589.
  • Sharifi-Rad, M., P. Pohl, F. Epifano, and J. M. Álvarez-Suarez. 2020. Green synthesis of silver nanoparticles using Astragalus Tribuloides Delile. root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials 10 (12):2383. doi:10.3390/nano10122383.
  • Sherman, M. Y., and V. L. Gabai. 2015. Hsp70 in cancer: Back to the future. Oncogene 34 (32):4153–61. doi:10.1038/onc.2014.349.
  • Singh, V., A. Khurana, U. Navik, P. Allawadhi, K. K. Bharani, and R. Weiskirchen. 2022. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Science 4 (2):15. doi:10.3390/sci4020015.
  • Slavin, Y. N., J. Asnis, U. O. Häfeli, and H. Bach. 2017. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 15 (1):65. doi:10.1186/s12951-017-0308-z.
  • Soni, V., P. Raizada, P. Singh, H. N. Cuong, R. S, A. Saini, R. V. Saini, Q. V. Le, A. K. Nadda, T.-T. Le, et al. 2021. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. Environmental Research 202:111622. doi:10.1016/j.envres.2021.111622.
  • Subba Rao, Y., V. S. Kotakadi, T. N. V. K. V. Prasad, A. V. Reddy, and D. V. R. Sai Gopal. 2013. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi Tulasi (Ocimum Sanctum) leaf extract. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 103:156–9. doi:10.1016/j.saa.2012.11.028.
  • Sung, H., J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians 71 (3):209–49. doi:10.3322/caac.21660.
  • Taghavizadeh Yazdi, M. E., A. Hamidi, M. S. Amiri, R. K. Oskuee, H. A. Hosseini, A. Hashemzadeh, and M. Darroudi. 2019. Eco-friendly and plant-based synthesis of silver nanoparticles using Allium Giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Materials Technology 34 (8):490–7. doi:10.1080/10667857.2019.1583408.
  • Takayama, S., J. C. Reed, and S. Homma. 2003. Heat-shock proteins as regulators of apoptosis. Oncogene 22 (56):9041–7. doi:10.1038/sj.onc.1207114.
  • Tutar, Y., and A. Ozgur. 2014. Heat shock protein 90 inhibitors in oncology. Current Proteomics 11:2–16. doi:10.2174/1570164611666140415224635.
  • Tutar, L., and Y. Tutar. 2010. Heat shock proteins; an overview. Current Pharmaceutical Biotechnology 11 (2):216–22. doi:10.2174/138920110790909632.
  • Urnukhsaikhan, E., B.-E. Bold, A. Gunbileg, N. Sukhbaatar, and T. Mishig-Ochir. 2021. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus Crispus. Scientific Reports 11 (1):21047. doi:10.1038/s41598-021-00520-2.
  • Vanlalveni, C., S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, and S. L. Rokhum. 2021. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances 11 (5):2804–37. doi:10.1039/D0RA09941D.
  • Vasan, N., J. Baselga, and D. M. Hyman. 2019. A view on drug resistance in cancer. Nature 575 (7782):299–309. doi:10.1038/s41586-019-1730-1.
  • Wang, X., M. Chen, J. Zhou, and X. Zhang. 2014. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. International Journal of Oncology 45 (1):18–30. doi:10.3892/ijo.2014.2399.
  • Wasser, S. P. 2014. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomedical Journal 37 (6):345–56. doi:10.4103/2319-4170.138318.
  • Xiong, J., Y. Li, X. Tan, and L. Fu. 2020. Small heat shock proteins in cancers: Functions and therapeutic potential for cancer therapy. International Journal of Molecular Sciences 21 (18):6611. doi:10.3390/ijms21186611.
  • Xu, L., Y.-Y. Wang, J. Huang, C.-Y. Chen, Z.-X. Wang, and H. Xie. 2020. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10 (20):8996–9031. doi:10.7150/thno.45413.
  • Yang, S., H. Xiao, and L. Cao. 2021. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomedicine & Pharmacotherapy [Biomedecine & Pharmacotherapie] 142:112074. doi:10.1016/j.biopha.2021.112074.
  • Zuo, D., J. Subjeck, and X.-Y. Wang. 2016. Unfolding the role of large heat shock proteins: New insights and therapeutic implications. Frontiers in Immunology 7:75. doi:10.3389/fimmu.2016.00075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.