332
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A CFD-based surrogate model for predicting slurry pipe flow pressure drops

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abd Al Aziz, A. I., and H. I. Mohamed. 2013. A study of the factors affecting transporting solid–liquid suspension through pipelines. Open Journal of Fluid Dynamics 3:152–162.
  • Antaya, C. L., K. F. K. Adane, and R. S. Sanders. 2012. Modelling concentrated slurry pipeline flows. In Fluids engineering division summer meeting, Vol. 44755, 1659–1671. New York: ASME. doi:10.1115/FEDSM2012-72379.
  • Auton, T. R., J. C. R. Hunt, and M. Prud'Homme. 1988. The force exerted on a body in inviscid unsteady non-uniform rotational flow. Journal of Fluid Mechanics 197:241–57. doi:10.1017/S0022112088003246.
  • Bakker, A., A. H. Haidari, and L. M. Oshinowo. 2001. Realize greater benefits from CFD. Chemical Engineering Progress 97 (3):45–53.
  • Basirat, S., and S. A. A. Salehi Neyshabouri. 2017. Eulerian–Eulerian model application to simulate scouring downstream of sluice gate. Iranian Journal of Science and Technology, Transactions of Civil Engineering 41 (2):197–203. doi:10.1007/s40996-017-0051-6.
  • Bordet, A., S. Poncet, M. Poirier, and N. Galanis. 2018. Advanced numerical modeling of turbulent ice slurry flows in a straight pipe. International Journal of Thermal Sciences 127:294–311. doi:10.1016/j.ijthermalsci.2018.02.004.
  • Brennen, C. E., and C. E. Brennen. 2005. Fundamentals of multiphase flow. Cambridge: Cambridge University Press.
  • Chen, L., Y. Duan, W. Pu, and C. Zhao. 2009. CFD simulation of coal–water slurry flowing in horizontal pipelines. Korean Journal of Chemical Engineering 26 (4):1144–54. doi:10.1007/s11814-009-0190-y.
  • Drew, D. A., and S. L. Passman. 2006. Theory of multicomponent fluids. Vol. 135. Cham: Springer Science & Business Media.
  • Durand, R. J. 1953. Basic relationships of the transportation of solids in pipes-experimental research. International Association for Hydraulic Research, 5th Congr. Minneapolis.
  • cardoso, M. A, and L. J. Durlofsky. 2010. Use of reduced-order modeling procedures for production optimization. SPE Journal 15 (2):426–35. doi:10.2118/119057-PA.
  • Ekambara, K., R. S. Sanders, K. Nandakumar, and J. H. Masliyah. 2009. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX. Industrial & Engineering Chemistry Research 48 (17):8159–71. doi:10.1021/ie801505z.
  • El Hamra, F., R. Boukharfane, S. Benjelloun, A. Ja, and J. M. Ghidaglia. 2022. Modeling of phosphates slurry pipelines through dynamic non-Newtonian fluid model with modelica. In 32nd European symposium on computer aided process engineering, ed. L. Montastruc and S. Negny, Vol. 51, 415–20. Amsterdam: Elsevier.
  • Elkarii, M., C. Bouallou, and A. Ratnani. 2020. Towards modelling a diphasic flow using the CFD technique to achieve a digital twin of a phosphate slurry piping process. Chemical Engineering Transactions 81:757–62.
  • Gidaspow, D. 1994. Multiphase flow and fluidization: Continuum and kinetic theory descriptions. New York: Academic Press.
  • Gillies, R. G., C. A. Shook, and J. Xu. 2008. Modelling heterogeneous slurry flows at high velocities. The Canadian Journal of Chemical Engineering 82 (5):1060–5. doi:10.1002/cjce.5450820523.
  • Gonzalez, J., N. Sabirgalieva, L. Rojas-Solorzano, and G. Zarruk. 2017. Numerical simulation of slurry flows in heterogeneous and saltation regimes in horizontal pipelines. Chemical Engineering Transactions 57:1279–84.
  • Gopaliya, M. K, and D. R. Kaushal. 2015. Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD. Particulate Science and Technology 33 (4):369–84. doi:10.1080/02726351.2014.971988.
  • Gopaliya, M. K, and D. R. Kaushal. 2016. Modeling of sand-water slurry flow through horizontal pipe using CFD. Journal of Hydrology and Hydromechanics 64 (3):261–72. doi:10.1515/johh-2016-0027.
  • Hernandez, F. H., A. J. Blanco, and L. Rojas-Solorzano. 2008. CFD modeling of slurry flows in horizontal pipes. In Fluids engineering division summer meeting, Vol. 48401, 857–863. New York: ASME. doi:10.1115/FEDSM2008-55103.
  • Johnson, P. C, and R. Jackson. 1987. Frictional–collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics 176 (1):67–93. doi:10.1017/S0022112087000570.
  • Kaushal, D. R., T. Thinglas, Y. Tomita, S. Kuchii, and H. Tsukamoto. 2012. CFD modeling for pipeline flow of fine particles at high concentration. International Journal of Multiphase Flow 43:85–100. doi:10.1016/j.ijmultiphaseflow.2012.03.005.
  • Kleijnen, J. P. C. 2015. Design and analysis of simulation experiments. International Workshop on Simulation, 3–22.
  • Kumar, N., M. K. Gopaliya, and D. R. Kaushal. 2019. Experimental investigations and CFD modeling for flow of highly concentrated iron ore slurry through horizontal pipeline. Particulate Science and Technology 37 (2):232–50. doi:10.1080/02726351.2017.1364313.
  • Lahiri, S. K, and K. C. Ghanta. 2010. Regime identification of slurry transport in pipelines: A novel modelling approach using ANN & differential evolution. Chemical Industry and Chemical Engineering Quarterly 16 (4):329–43. doi:10.2298/CICEQ091030034L.
  • Launder, B. E, and D. B. Spalding. 1983. The numerical computation of turbulent flows. In Numerical prediction of flow, heat transfer, turbulence and combustion, ed. D. Brian Spalding, 96–116. Amsterdam: Elsevier.
  • Levenberg, K. 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2 (2):164–8. doi:10.1090/qam/10666.
  • Ling, J., P. V. Skudarnov, C. X. Lin, and M. A. Ebadian. 2003. Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region. International Journal of Heat and Fluid Flow 24 (3):389–98. doi:10.1016/S0142-727X(03)00018-3.
  • Liu, W., Y. He, M. Li, Q. Chen, Y. Liu, and C. Huang. 2021. Computational fluid dynamics modeling of slurry flow in horizontal pipes: Effect of specularity coefficient on hydraulic gradient. Ocean Engineering 238:109625. doi:10.1016/j.oceaneng.2021.109625.
  • Marquardt, D. W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11 (2):431–41. doi:10.1137/0111030.
  • Matoušek, V., J. Krupička, J. Konfršt, and V. Pěník. 2013. Internal structure of settling-slurry flows: Solids distribution and friction in horizontal pipe. Proceedings of 16th International Conference on Transport and Sedimentation of Solid Particles, September, 18–20.
  • Maxey, M. R, and J. J. Riley. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids 26 (4):883–9. doi:10.1063/1.864230.
  • Mendygarin, Y., L. R. Rojas-Solórzano, N. Kussaiyn, R. Supiyev, and M. Zhussupbekov. 2017. Eulerian-Eulerian multiphase modeling of blood cells segregation in flow through microtubes. In ASME international mechanical engineering congress and exposition, Vol. 58363, V003T04A020. New York: ASME. doi:10.1115/IMECE2017-70850.
  • Messa, G. V, and V. Matoušek. 2020. Analysis and discussion of two fluid modelling of pipe flow of fully suspended slurry. Powder Technology 360:747–68. doi:10.1016/j.powtec.2019.09.017.
  • Moré, J. J. 1978. The Levenberg–Marquardt algorithm: Implementation and theory. In Numerical analysis, 105–16. Berlin: Springer.
  • Passalacqua, A, and R. O. Fox. 2011. Implementation of an iterative solution procedure for multi-fluid gas–particle flow models on unstructured grids. Powder Technology 213 (1–3):174–87. doi:10.1016/j.powtec.2011.07.030.
  • Rabhi, A., A. Chkifa, S. Benjelloun, and A. Latifi. 2018. Surrogate-based modeling in flotation processes. In Computer aided chemical engineering, ed. A. Kraslawski and I. Turunen, Vol. 43, 229–34. Amsterdam: Elsevier.
  • Reyes, C, and C. F. Ihle. 2018. Numerical simulation of cation exchange in fine-coarse seawater slurry pipeline flow. Minerals Engineering 117:14–23. doi:10.1016/j.mineng.2017.12.003.
  • Schiller, L, and A. Nauman. 1933. A drag coefficient correlation. Zeitschrift des Vereins Deutscher Ingenieure 77:318–20.
  • Seong, Y., C. Park, J. Choi, and I. Jang. 2020. Surrogate model with a deep neural network to evaluate gas–liquid flow in a horizontal pipe. Energies 13 (4):968. doi:10.3390/en13040968.
  • Silva, R., P. M. Faia, F. A. P. Garcia, and M. G. Rasteiro. 2016. Characterization of solid–liquid settling suspensions using electrical impedance tomography: A comparison between numerical, experimental and visual information. Chemical Engineering Research and Design 111:223–42. doi:10.1016/j.cherd.2016.05.013.
  • Singh, M. K., S. Kumar, and D. Ratha. 2020. Computational analysis on disposal of coal slurry at high solid concentrations through slurry pipeline. International Journal of Coal Preparation and Utilization 40 (2):116–30. doi:10.1080/19392699.2017.1346632.
  • Swamee, P. K, and A. K. Jain. 1976. Explicit equations for pipe-flow problems. Journal of the Hydraulics Division 102 (5):657–64. doi:10.1061/JYCEAJ.0004542.
  • Turian, R. M, and T.-F. Yuan. 1977. Flow of slurries in pipelines. AIChE Journal 23 (3):232–43. doi:10.1002/aic.690230305.
  • Wang, J., S. Wang, T. Zhang, and Y. Liang. 2013. Numerical investigation of ice slurry isothermal flow in various pipes. International Journal of Refrigeration 36 (1):70–80. doi:10.1016/j.ijrefrig.2012.08.007.
  • Weber, M. 1986. Improved Durand-equation for multiple application. International Symposium on Slurry Flows.
  • Weller, H. G., G. Tabor, H. Jasak, and C. Fureby. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics 12 (6):620–31. doi:10.1063/1.168744.
  • Wilcox, D. C. 1998. Turbulence modeling for CFD. Vol. 2. La Canada, CA: DCW Industries.
  • Wilson, K. C, and A. Sellgren. 2003. Interaction of particles and near-wall lift in slurry pipelines. Journal of Hydraulic Engineering 129 (1):73–6. doi:10.1061/(ASCE)0733-9429(2003)129:1(73).
  • Zhang, M., Y. Kang, W. Wei, D. Li, and T. Xiong. 2021. CFD investigation of the flow characteristics of liquid–solid slurry in a large-diameter horizontal pipe. Particulate Science and Technology 39 (6):712–25. doi:10.1080/02726351.2020.1799274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.