116
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Sida cordata assisted bio-inspired silver nanoparticles and its antimicrobial, free-radical scavenging, tyrosinase inhibition, and photocatalytic activity (4 in 1 system)

, , , &

References

  • Ahluwalia, V., S. Elumalai, V. Kumar, S. Kumar, and R. S. Sangwan. 2018. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microbial Pathogenesis 114:402–8. doi:10.1016/j.micpath.2017.11.052.
  • Akamatsu, K., S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto. 2000. Preparation, and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359 (1):55–60. doi:10.1016/S0040-6090(99)00684-7.
  • Ameta, A., R. Ameta, and M. Ahuja. 2013. Photocatalytic degradation of methylene blue over ferric tungstate. Scientific Reviews Chemical Communications 3:172–80.
  • Armstrong, N., M. Ramamoorthy, D. Lyon, K. Jones, and A. Duttaroy. 2013. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8 (1):e53186. doi:10.1371/journal.pone.0053186.
  • Balamurugan, K., and W. Schaffner. 2006. Copper homeostasis in eukaryotes: teetering on a tightrope. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1763 (7):737–46. doi:10.1016/j.bbamcr.2006.05.001.
  • Barabadi, H. 2017. Nanobiotechnology: A promising scope of gold biotechnology. Cellular and Molecular Biology 63 (12):3–4. doi:10.14715/cmb/2017.63.12.2.
  • Barabadi, H., F. Mojab, H. Vahidi, B. Marashi, N. Talank, O. Hosseini, and M. Saravanan. 2021. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communication 129 (2021):108647. doi:10.1016/j.inoche.2021.108647.
  • Barabadi, H., O. Hosseini, K. D. Kamali, F. J. Shoushtari, M. Rashedi, H. H. Aminjan, and M. Saravanan. 2020. Emerging theranostic silver nanomaterials to combat lung cancer: A systematic review. Journal of Cluster Science 31 (1):1–10. doi:10.1007/s10876-019-01639-z.
  • Barabadi, H., T. J. Webster, H. Vahidi, H. Sabori, K. D. Kamali, F. J. Shoushtari, M. A. Mahjoub, M. Rashedi, E. Mostafav, D. M. Cruz, et al. 2020. Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: A systematic review. Iranian Journal of Pharmaceutical Research 19 (3):3–17. doi:10.22037/ijpr.2020.113820.14504.
  • Barabadi, H., Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, A. R. Ghomi , and M. Saravanan. 2019. Emerging theranostic silver nanomaterials to combat colorectal cancer: A systematic review. Journal Cluster Science 31:311–321. doi:10.1007/s10876-019-01668-8.
  • Choi, C. W., S. C. Kim, S. S. Hwang, B. K. Choi, H. J. Ahn, M. Y. Lee, S. H. Park, and S. K. Kim. 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay guided comparison. Plant Science 163 (6):1161–8. doi:10.1016/S0168-9452(02)00332-1.
  • Chugh, D., V. S. Viswamalya, and B. Das. 2021. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology 19 (1):126. doi:10.1186/s43141-021-00228-w.
  • Cruz, D. M., E. Mostafavi, A. V. Crua, H. Barabadi, V. Shah, J. L. C. Díaz, G. Guisbiers, and T. J. Webster. 2020. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. Journal of Physics: Materials 3 (3):034005. doi:10.1088/2515-7639/ab8186.
  • Dakal, T. C., A. Kumar, R. S. Majumdar, and V. Yadav. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology 7:1831. doi:10.3389/fmicb.2016.01831.
  • Darroudi, M., A. Zak, M. R. Muhamad, N. M. Huang, and M. Hakimi. 2012. Green synthesis of colloidal silver nanoparticles by sonochemical method. Materials Letters 66 (1):117–20. doi:10.1016/j.matlet.2011.08.016.
  • Dhillon, G. S., S. K. Brar, S. Kaur, and M. Verma. 2012. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Critical Reviews in Biotechnology 32 (1):49–73. doi:10.3109/07388551.2010.550568.
  • Durán, N., M. Durán, M. B. de Jesus, A. B. Seabra, W. J. Fávaro, and G. Nakazato. 2016. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12 (3):789–99. doi:10.1016/j.nano.2015.11.016.
  • Emmanuel, R., S. Palanisamy, S.-M. Chen, K. Chelladurai, S. Padmavathy, M. Saravanan, P. Prakash, M. Ajmal Ali, and F. M. A. Al-Hemaid. 2015. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Materials Science & Engineering. C, Materials for Biological Applications 56:374–9. doi:10.1016/j.msec.2015.06.033.
  • Gan, P., and P. S. F. Y. Li. 2012. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Reviews in Environmental Science and Bio/Technology 11 (2):169–206. doi:10.1007/s11157-012-9278-7.
  • Ganesh, M., and M. Mohankumar. 2017. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography–mass spectrometry. Journal of Food Science and Technology 54 (10):3082–91. doi:10.1007/s13197-017-2744-z.
  • Girilal, M. 2013. Application of biogenic nanoparticles Ag and Au in in vivo and in vitro toxicity studies. PhD thesis, Center for Advanced Studies in Botany University of Madras.
  • Gnanasekaran, D., C. Umamaheswara Reddy, B. Jaiprakash, N. Narayanan, S. Hannah Elizabeth, and R. Y. Kiran. 2012. Adaptogenic activity of a Siddha medicinal plant: S. cordata. International Journal of Pharmaceutical and Biomedical Research 3:7–11.
  • Govindappa, M., H. Farheen, C. P. Chandrappa, R. V. Rai, and V. B. Raghavendra. 2016. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrosinase inhibitory activity. Advances in Natural Sciences: Nanoscience and Nanotechnology 7 (3):035014. doi:10.1088/2043-6262/7/3/035014.
  • Gulnaz, A. R., and G. Savitha. 2013. Evaluation of antimicrobial activity of leaf and stem extracts of Sidda medicinal plant Sida cordata. International Journal of Medical and Pharmaceutical Sciences 3 (3):39–50.
  • Guntur, S. R., N. S. Kumar, M. M. Hegde, and V. R. Dirisala. 2018. In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Desmostachya bipinnata. Analytical Chemistry Insights 13:117739011878287–9. doi:10.1177/1177390118782877.
  • Honary, S., E. G. Fathabad, H. Barabadi, and F. Naghibi. 2013. Fungus-mediated synthesis of gold nanoparticles: A novel biological approach to nanoparticle synthesis. Journal of Nanoscience and Nanotechnology 13 (2):1427–30. doi:10.1166/jnn.2013.5989.
  • Honary, S., H. Barabadi, P. Ebrahimi, F. Naghibi, and A. Alizadeh. 2015. Development and optimization of biometal nanoparticles by using mathematical methodology: A microbial approach. Journal of Nano Research 30:106–15. doi:10.4028/www.scientific.net/JNanoR.30.106.
  • Jagtap, U. B., and V. A. Bapat. 2013. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products 46:132–7. doi:10.1016/j.indcrop.2013.01.019.
  • Johnson, A. S., I. B. Obot, and U. S. Ukpong. 2014. Green synthesis of silver nanoparticles using Artemisia annua and Sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials. Journal of Materials and Environmental Science 5 (3):899–906.
  • Kansal, S. K., M. Singh, and D. Sud. 2008. Studies on TiO2/ZnO photocatalysed degradation of lignin. Journal of Hazardous Materials 153 (1–2):412–7. doi:10.1016/j.jhazmat.2007.08.091.
  • Kumar, P., M. Govindaraju, S. Senthamilselvi, and K. Premkumar. 2013. Photocatalytic degradation of methyl orange dye using silver nanoparticles synthesized from Ulva lactuca. Colloids and Surfaces. B, Biointerfaces 103:658–61. doi:10.1016/j.colsurfb.2012.11.022.
  • Kumar, V., S. Mohan, D. K. Singh, D. K. Verma, V. K. Singh, and S. H. Hasan. 2017. Photomediated optimized synthesis of silver nanoparticles for the selective detection of iron (III), antibacterial and antioxidant activity. Material Science and Engineering: C 71:1004–19. doi:10.1016/j.msec.2016.11.013.
  • Lalitha, A., R. Subbaiya, and P. Ponmurugan. 2013. Green synthesis of silver nanoparticles from leaf extract Azhadiracha indica and to study its anti-bacterial and antioxidant property. International Journal of Current Microbiology and Applied Science 2:228–35.
  • Lee, O., and E. Kim. 1995. Skin Lightening. Cosmetics Toiletries 110:51–6.
  • Mock, J., M. Barbic, D. Smith, D. Schultz, and S. Schultz. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 116 (15):6755–9. doi:10.1063/1.1462610.
  • Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16 (10):2346–53. doi:10.1088/0957-4484/16/10/059.
  • Morones-Ramirez, J. R., J. A. Winkler, C. S. Spina, and J. J. Collins. 2013. Silver enhances antibiotic activity against gram-negative bacteria. Science Translational Medicine 5 (190):190ra81. doi:10.1126/scitranslmed.3006276.
  • Mostafavi, E., A. Zarepour, H. Barabadi, A. Zarrabi, L. B. Truong, and D. M. Cruz. 2022. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: Beginning a new era in cancer theragnostic. Biotechnology Reports 34:e00714. doi:10.1016/j.btre.2022.e00714.
  • Navaladian, S., B. Viswanathan, R. P. Viswanath, and T. K. Varadarajan. 2007. Thermal decomposition as route for silver nanoparticles. Nanoscale Research Letters 2 (1):44. doi:10.1007/s11671-006-9028-2.
  • Pallela, P. N. V. K., S. Ummey, L. K. Ruddaraju, S. V. N. Pammi, and S.-G. Yoon. 2018. Ultra-small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis 124:63–9. doi:10.1016/j.micpath.2018.08.026.
  • Pawelek, J. M., and A. M. Körner. 1982. The biosynthesis of mammalian melanin. American Scientist 70 (2):136–45.
  • Ravichandran, V., S. Vasanthi, S. Shalini, S. A. A. Shah, M. Tripathy, and M. Paliwal. 2019. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in Physics 15:102565. doi:10.1016/j.rinp.2019.102565.
  • Roy, A., O. Bulut, S. Some, A. K. Mandal, and M. D. Yilmaz. 2019. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances 9 (5):2673–702. doi:10.1039/C8RA08982E.
  • Roy, P., B. Das, A. Mohanty, and S. Mohapatra. 2017. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Applied Nanoscience 7 (8):843–50. doi:10.1007/s13204-017-0621-8.
  • Sahu, M. K., and R. K. Patel. 2016. Novel visible-light-driven cobalt loaded neutralized red mud (Co/NRM) composite with photocatalytic activity toward methylene blue dye degradation. Journal of Industrial and Engineering Chemistry 40:72–82. doi:10.1016/j.jiec.2016.06.008.
  • Saravanakumar, A., M. M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, and H. T. Jang. 2017. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artificial Cells Nanomedicine and Biotechnology 45 (6):1165–71. doi:10.1080/21691401.2016.1203795.
  • Shah, N. A., M. R. Khan, B. Ahmad, F. Noureen, U. Rashid, and R. A. Khan. 2013. Investigation on flavonoid composition and anti-free radical potential of Sida cordata. BMC Complementary and Alternative Medicine 13 (1):276. doi:10.1186/1472-6882-13-276.
  • Slavin, Y. N., J. Asnis, U. Häfeli, and H. Bach. 2017. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnolgy 15:65. doi:10.3389/fmicb.2016.01831.
  • Sondi, I., and S. B. Salopek. 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science 275 (1):177–82. doi:10.1016/j.jcis.2004.02.012.
  • Talank, N., H. Morad, H. Barabadi, F. Mojab, S. Amidi, F. Kobarfard, M. A. Mahjoub, K. Jounaki, N. Mohammadi, G. Salehi, et al. 2022. Bioengineering of green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance. Talanta 243:123374. doi:10.1016/j.talanta.2022.123374.
  • Tseng, K. H., Y. C. Chen, and J. J. Shyue. 2011. Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions. Journal of Nanoparticle Research 13 (5):1865–72. doi:10.1007/s11051-010-9937-y.
  • Vahidi, H., F. Kobarfard, A. Alizadeh, M. Saravanan, and H. Barabadi. 2021. Green nanotechnology-based Tellurium nanoparticles: Exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium Tellurite. Inorganic Chemistry Communications 124:108385. doi:10.1016/j.inoche.2020.108385.
  • Virmani, I., C. Sasi, E. Priyadarshini, R. Kumar, S. K. Sharma, G. P. Singh, R. B. Pachwarya, R. Paulraj, H. Barabadi, M. Saravanan, et al. 2020. Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles. Journal of Cluster Science 31 (4):867–76. doi:10.1007/s10876-019-01695-5.
  • Woldeyes, S., L. Adane, Y. Tariku, D. Muleta, and T. Begashaw. 2012. Evaluation of antibacterial activities of compounds isolated from Sida rhombifolia Linn. (Malvaceae). Natural Products Chemistry Research 1:1. doi:10.4172/2329-6836.1000101.
  • Yu, L., J. Xi, M.-D. Li, H. T. Chan, T. Su, D. L. Phillips, and W. K. Chan. 2012. The degradation mechanism of methyl orange under photo-catalysis of TiO2. Physical Chemistry Chemical Physics 14 (10):3589–95. doi:10.1039/c2cp23226j.
  • Zhao, X., Y. Xia, Q. Li, X. Ma, F. Quan, C. Geng, and Z. Han. 2014. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 444:180–8. doi:10.1016/j.colsurfa.2013.12.008.
  • Zhou, H., K. M. Cadigan, and D. J. Thiele. 2003. A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. The Journal of Biological Chemistry 278 (48):48210–8. doi:10.1074/jbc.M309820200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.