167
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Efficient antibacterial activity in copper oxide nanoparticles biosynthesized via Jasminum sambac flower extract

, , ORCID Icon & ORCID Icon

References

  • Adam, J., M. R. Del Sorbo, J. Kaur, R. Romano, M. Singh, M. Valadan, and C. Altucci. 2022. Surface interactions studies of novel two-dimensional molybdenum disulfide with gram-negative and gram-positive bacteria. Analytical Letters. doi:10.1080/00032719.2022.2070186.
  • Ahamed, M., H. A. Alhadlaq, M. A. Khan, P. Karuppiah, and N. A. Al-Dhabi. 2014. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. Journal of Nanomaterials 2014:1–4. doi:10.1155/2014/637858.
  • Amin, F., B. Khattak, A. Alotaibi, M. Qasim, I. Ahmad, R. Ullah, M. Bourhia, A. Gul, S. Zahoor, and R. Ahmad. 2021. Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evidence-Based Complementary and Alternative Medicine 2021:1–12. doi:10.1155/2021/5589703.
  • Applerot, G., J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin. 2012. Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small 8 (21):3326–37. doi:10.1002/smll.201200772.
  • Aravind, M., A. Ahmad, I. Ahmad, M. Amalanathan, K. Naseem, S. M. M. Mary, C. Parvathiraja, S. Hussain, T. S. Algarni, M. Pervaiz, et al. 2021. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. Journal of Environmental Chemical Engineering 9 (1):104877. doi:10.1016/j.jece.2020.104877.
  • Aravind, M., M. Amalanathan, and M. Mary. 2021. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Applied Sciences 3 (4):1–10. doi:10.1007/s42452-021-04281-5.
  • Atuchin, V. V., L. I. Isaenko, V. G. Kesler, Z. S. Lin, M. S. Molokeev, A. P. Yelisseyev, and S. A. Zhurkov. 2012. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. Journal of Solid State Chemistry 187:159–64. doi:10.1016/j.jssc.2011.12.037.
  • Ayoman, E., and S. Hosseini. 2016. Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. Journal of Thermal Analysis and Calorimetry 123 (2):1213–24. doi:10.1007/s10973-015-5059-1.
  • Azam, A., A. S. Ahmed, M. Oves, M. S. Khan, and A. Memic. 2012. Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. International Journal of Nanomedicine 7:3527–35. doi:10.2147/IJN.S29020.
  • Badri, A., S. Slimi, M. Guergueb, H. Kahri, and X. Mateos. 2021. Green synthesis of copper oxide nanoparticles using prickly pear peel fruit extract: characterization and catalytic activity. Inorganic Chemistry Communications 134:109027. doi:10.1016/j.inoche.2021.109027.
  • Benhadria, N., M. Hachemaoui, F. Zaoui, A. Mokhtar, S. Boukreris, T. Attar, L. Belarbi, and B. Boukoussa. 2022. Catalytic reduction of methylene blue dye by copper oxide nanoparticles. Journal of Cluster Science 33 (1):249–60. doi:10.1007/s10876-020-01950-0.
  • Benhammada, A., and D. Trache. 2022. Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior. Journal of Thermal Analysis and Calorimetry 147 (2):1–16. doi:10.1007/s10973-020-10469-5.
  • Bhattacharya, P., S. Swarnakar, S. Ghosh, S. Majumdar, and S. Banerjee. 2019. Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation. Journal of Environmental Chemical Engineering 7 (1):102867. doi:10.1016/j.jece.2018.102867.
  • Bhaumik, A., A. Haque, P. Karnati, M. F. N. Taufique, R. Patel, and K. Ghosh. 2014. Copper oxide based nanostructures for improved solar cell efficiency. The 41st International Conference on Metallurgical Coatings and Thin Films, Vol. 572, 126–133. doi:10.1016/j.tsf.2014.09.056.
  • Bhaumik, A., A. M. Shearin, R. Patel, and K. Ghosh. 2014. Significant enhancement of optical absorption through nano-structuring of copper based oxide semiconductors: possible future materials for solar energy applications. Physical Chemistry Chemical Physics 16 (22):11054–66. doi:10.1039/c4cp00827h.
  • Bhosale, M. A., and B. M. Bhanage. 2016. A simple approach for sonochemical synthesis of Cu2O nanoparticles with high catalytic properties. Advanced Powder Technology 27 (1):238–44. doi:10.1016/j.apt.2015.12.008.
  • Boltaev, G. S., R. A. Ganeev, P. S. Krishnendu, K. Zhang, and C. Guo. 2019. Nonlinear optical characterization of copper oxide nanoellipsoids. Scientific Reports 9 (1):11414. doi:10.1038/s41598-019-47941-8.
  • Bordbar, M., Z. Sharifi-Zarchi, and B. Khodadadi. 2017. Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: High catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue. Journal of Sol-Gel Science and Technology 81 (3):724–33. doi:10.1007/s10971-016-4239-1.
  • Cuong, H. N., S. Pansambal, S. Ghotekar, R. Oza, N. T. Thanh Hai, N. M. Viet, and V. Nguyen. 2022. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research 203:111858. doi:10.1016/j.envres.2021.111858.
  • Denisenko, Y. G., M. S. Molokeev, A. S. Oreshonkov, A. S. Krylov, A. S. Aleksandrovsky, N. O. Azarapin, O. V. Andreev, I. A. Razumkova, and V. V. Atuchin. 2021. Crystal structure, vibrational, spectroscopic and thermochemical properties of double sulfate crystalline hydrate [CsEu(H2O)3(SO4)2]·H2O and its thermal dehydration product CsEu(SO4)2. Crystals 11 (9):1027. doi:10.3390/cryst11091027.
  • Dhineshbabu, N. R., V. Rajendran, N. Nithyavathy, and R. Vetumperumal. 2016. Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience 6 (6):933–9. doi:10.1007/s13204-015-0499-2.
  • Dizajghorbani, A., H. H. Azadi, M. Esmaeilzadeh, S. Moemen Bellah, and R. Malekfar. 2019. Ablation time and laser fluence impacts on the composition, morphology and optical properties of copper oxide nanoparticles. Optical Materials 91:433–8. doi:10.1016/j.optmat.2019.03.027.
  • Dyshlyuk, L., O. Babich, S. Ivanova, N. Vasilchenco, V. V. Atuchin, I. Korolkov, D. Russakov, and A. Prosekov. 2020. Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. International Biodeterioration & Biodegradation 146:104821. doi:10.1016/j.ibiod.2019.104821.
  • El-Batal, A. I., G. S. El-Sayyad, A. El-Ghamery, and M. Gobara. 2017. Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. Journal of Cluster Science 28 (3):1083–112. doi:10.1007/s10876-016-1101-0.
  • ElFaham, M. M., A. M. Mostafa, and A. Toghan. 2021. Facile synthesis of Cu2O nanoparticles using pulsed laser ablation method for optoelectronic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 630:127562. doi:10.1016/j.colsurfa.2021.127562.
  • El-Trass, A., H. ElShamy, I. El-Mehasseb, and M. El-Kemary. 2012. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Applied Surface Science 258 (7):2997–3001. doi:10.1016/j.apsusc.2011.11.025.
  • Garg, V., B. S. Sengar, G. Siddharth, S. Kumar, V. V. Atuchin, and S. Mukherjee. 2021. Insights into the sputter-instigated valence plasmon oscillations in CIGSe thin films. Surfaces and Interfaces 25:101146. doi:10.1016/j.surfin.2021.101146.
  • Garg, V., B. S. Sengar, V. Awasthi, A. Kumar, R. Singh, S. Kumar, C. Mukherjee, V. V. Atuchin, and S. Mukherjee. 2018. Investigation of dual-ion beam sputter-instigated plasmon generation in TCOs: A case study of GZO. ACS Applied Materials & Interfaces 10 (6):5464–74. doi:10.1021/acsami.7b15103.
  • Gawande, M. B., A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma. 2016. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chemical Reviews 116 (6):3722–811. doi:10.1021/acs.chemrev.5b00482.
  • Golovnev, N. N., M. S. Molokeev, A. S. Samoilo, and V. V. Atuchin. 2016. Influence of alkyl substituents in 1,3-diethyl-2-thiobarbituric acid on the coordination environment in M(H2O)2 (1,3-Diethyl-2-Thiobarbiturate)2 M = Ca2+, Sr2+. Journal of Coordination Chemistry 69 (6):957–65. doi:10.1080/00958972.2016.1149168.
  • Golovnev, N. N., M. S. Molokeev, S. N. Vereshchagin, V. V. Atuchin, M. Y. Sidorenko, and M. S. Dmitrushkov. 2014. Crystal structure and properties of the precursor [Ni(H2O)6](HTBA)2·2Н2О and the complexes M(HTBA)2 (H2O)2 (M = Ni, Co, Fe). Polyhedron 70:71–6. doi:10.1016/j.poly.2013.12.021.
  • Gondal, M. A., T. F. Qahtan, M. A. Dastageer, T. A. Saleh, Y. W. Maganda, and D. H. Anjum. 2013. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation. Applied Surface Science 286:149–55. doi:10.1016/j.apsusc.2013.09.038.
  • Gopalakrishnan, V., and S. Muniraj. 2021. Neem flower extract assisted green synthesis of copper nanoparticles–optimisation, characterisation and anti-bacterial study. Materials Today: Proceedings 36:832–6.
  • Gounder Thangamani, J., and S. K. Khadheer Pasha. 2021. Hydrothermal synthesis of copper (II) oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor. Chemosphere 277:130237. doi:10.1016/j.chemosphere.2021.130237.
  • Guzman, M., M. Arcos, J. Dille, S. Godet, and C. Rousse. 2018. Effect of the concentration of NaBH4 and N2H4 as reductant agent on the synthesis of copper oxide nanoparticles and its potential antimicrobial applications. Nano Biomedicine and Engineering 10 (4):392–405.
  • Inam, M., J. C. Foster, J. Gao, Y. Hong, J. Du, A. P. Dove, and R. K. O'Reilly. 2019. Size and shape affects the antimicrobial activity of quaternized nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 57 (3):255–9. doi:10.1002/pola.29195.
  • Jadhav, M. S., S. Kulkarni, P. Raikar, D. A. Barretto, S. K. Vootla, and U. S. Raikar. 2018. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New Journal of Chemistry 42 (1):204–13. doi:10.1039/C7NJ02977B.
  • Jayalakshmi, Y. A., and A. Yogamoorthi. 2014. Green synthesis of copper oxide nanoparticles using aqueous extract of flowers of Cassia alata and particles characterization. International Journal of Nanomaterials and Biostructures 4 (4):66–71.
  • Kalaiyan, G., S. Suresh, S. Thambidurai, K. M. Prabu, S. K. Kumar, N. Pugazhenthiran, and M. Kandasamy. 2020. Green synthesis of hierarchical copper oxide microleaf bundles using Hibiscus cannabinus leaf extract for antibacterial application. Journal of Molecular Structure 1217:128379. doi:10.1016/j.molstruc.2020.128379.
  • Karunakaran, G., M. Jagathambal, G. S. Kumar, and E. Kolesnikov. 2020. Hylotelephium telephium flower extract-mediated biosynthesis of CuO and ZnO nanoparticles with promising antioxidant and antibacterial properties for healthcare applications. JOM 72 (3):1264–72. doi:10.1007/s11837-020-04007-9.
  • Katwal, R., H. Kaur, G. Sharma, M. Naushad, and D. Pathania. 2015. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. Journal of Industrial and Engineering Chemistry 31:173–84. doi:10.1016/j.jiec.2015.06.021.
  • Kayani, Z. N., M. Umer, S. Riaz, and S. Naseem. 2015. Characterization of copper oxide nanoparticles fabricated by the sol–gel method. Journal of Electronic Materials 44 (10):3704–9. doi:10.1007/s11664-015-3867-5.
  • Khalaji, A. D., Z. Pazhand, K. Kiani, P. Machek, M. Jarosova, and R. Mazandarani. 2020. CuO nanoparticles: Preparation, characterization, optical properties, and antibacterial activities. Journal of Materials Science: Materials in Electronics 31 (14):11949–54. doi:10.1007/s10854-020-03749-1.
  • Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12 (7):908–31. doi:10.1016/j.arabjc.2017.05.011.
  • Khangarot, R. K., M. Khandelwal, and R. Singh. 2022. Copper-based polymer nanocomposites: Application as sensors. In Metal nanocomposites for energy and environmental applications, 489–508. Springer.
  • Kumar, A., A. Saxena, A. De, R. Shankar, and S. Mozumdar. 2013. Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions. RSC Advances 3 (15):5015–21. doi:10.1039/c3ra23455j.
  • Kumar, N., S. S. Parui, S. Limbu, D. K. Mahato, N. Tiwari, and R. N. Chauhan. 2021. Structural and optical properties of sol–gel derived CuO and Cu2O nanoparticles. Materials Today: Proceedings 41:237–41. doi:10.1016/j.matpr.2020.08.800.
  • Kumar, S. V., A. P. Bafana, P. Pawar, M. Faltane, A. Rahman, S. A. Dahoumane, A. Kucknoor, and C. S. Jeffryes. 2019. Optimized production of antibacterial copper oxide nanoparticles in a microwave-assisted synthesis reaction using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects 573:170–8. doi:10.1016/j.colsurfa.2019.04.063.
  • Kunhachan, P., C. Banchonglikitkul, T. Kajsongkram, A. Khayungarnnawee, and W. Leelamanit. 2012. Chemical composition, toxicity and vasodilatation effect of the flowers extract of Jasminum sambac (L.) Ait. “G. Duke of Tuscany”. Evidence-Based Complementary and Alternative Medicine 2012: 471312.
  • Kurkure, R. V., S. Jaybhaye, and A. Sangle. 2016. Synthesis of copper/copper oxide nanoparticles in ecofriendly and non-toxic manner from floral extract of Caesalpinia pulcherrima. International Journal on Recent and Innovation Trends in Computing and Communication 4 (4):363–6.
  • Laha, D., A. Pramanik, A. Laskar, M. Jana, P. Pramanik, and P. Karmakar. 2014. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Materials Research Bulletin 59:185–91. doi:10.1016/j.materresbull.2014.06.024.
  • Langford, J. I., and D. Louer. 1991. High-resolution powder diffraction studies of copper (II) oxide. Journal of Applied Crystallography 24 (2):149–55. doi:10.1107/S0021889890012092.
  • Lee, Y. S., B. Bora, S. L. Yap, and C. S. Wong. 2012. Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process. Current Applied Physics 12 (1):199–203. doi:10.1016/j.cap.2011.06.001.
  • Letchumanan, D., S. P. M. Sok, S. Ibrahim, N. H. Nagoor, and N. M. Arshad. 2021. Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 11 (4):564. doi:10.3390/biom11040564.
  • Li, P., W. Lv, and S. Ai. 2016. Green and gentle synthesis of Cu2O nanoparticles using Lignin as reducing and capping reagent with antibacterial properties. Journal of Experimental Nanoscience 11 (1):18–27. doi:10.1080/17458080.2015.1015462.
  • Ma, L., Z. Xia, V. V. Atuchin, M. Molokeev, S. Auluck, A. H. Reshak, and Q. Liu. 2015. Engineering oxygen vacancies towards self-activated BaLuAlxZn4−xO7−(1−x)/2 photoluminescent materials: An experimental and theoretical analysis. Physical Chemistry Chemical Physics 17 (46):31188–94. doi:10.1039/c5cp05130d.
  • Manasa, D. J., K. R. Chandrashekar, D. J. Madhu Kumar, M. Niranjana, and K. Meghana Navada. 2021. Mussaenda frondosa L. mediated facile green synthesis of copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations. Arabian Journal of Chemistry 14 (6):103184. doi:10.1016/j.arabjc.2021.103184.
  • Manjari, G., S. Saran, T. Arun, A. V. Bhaskara Rao, and S. P. Devipriya. 2017. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. Journal of Saudi Chemical Society 21 (5):610–8. doi:10.1016/j.jscs.2017.02.004.
  • Meghana, S., P. Kabra, S. Chakraborty, and N. Padmavathy. 2015. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances 5 (16):12293–9. doi:10.1039/C4RA12163E.
  • Mulvaney, P. 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12 (3):788–800. doi:10.1021/la9502711.
  • Narayanan, M., F. Ahamed, J. Hussain, B. Srinivasan, M. T. Sambantham, L. A. Al-Keridis, and F. A. Al-Mekhlafi. 2022. Green synthesizes and characterization of copper-oxide nanoparticles by Thespesia populnea against skin-infection causing microbes. Journal of King Saud University Science 34 (3):101885. doi:10.1016/j.jksus.2022.101885.
  • Nasrollahzadeh, M., S. M. Sajadi, and A. Rostami-Vartooni. 2015. Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A3 coupling reaction. Journal of Colloid and Interface Science 459:183–8. doi:10.1016/j.jcis.2015.08.020.
  • Nguyen, V. T., and K. S. Trinh. 2020. Effects of synthetic procedures and postsynthesis incubation PH on size, shape, and antibacterial activity of copper (I) oxide nanoparticles. Nenad Ignjatović. Journal of Chemistry 2020:1–10. doi:10.1155/2020/9541934.
  • Nishad, H. S., S. P. Gupta, V. Kotha, B. M. Patil, S. D. Chakane, M. G. Bute, S. W. Gosavi, D. J. Late, and P. S. Walke. 2022. Enhanced van-der Waals separation in hydrated tungsten oxide nanoplates enables superior pseudocapacitive charge storage. Journal of Alloys and Compounds 914:165227. doi:10.1016/j.jallcom.2022.165227.
  • Nithiyavathi, R., S. J. Sundaram, G. T. Anand, D. R. Kumar, A. D. Raj, D. A. Al Farraj, R. M. Aljowaie, M. R. AbdelGawwad, Y. Samson, and K. Kaviyarasu. 2021. Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens. Journal of Infection and Public Health 14 (12):1893–902. doi:10.1016/j.jiph.2021.10.022.
  • Padil, V. V. T., and M. Černík. 2013. Green synthesis of copper oxide nanoparticles using Gum Karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine 8:889–98. doi:10.2147/IJN.S40599.
  • Rafique, M., F. Shafiq, S. S. Ali Gillani, M. Shakil, M. Bilal Tahir, and I. Sadaf. 2020. Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamine B dye form textile wastewater. Optik 208:164053. doi:10.1016/j.ijleo.2019.164053.
  • Rajendran, A., E. Siva, C. Dhanraj, and S. Senthilkumar. 2018. A green and facile approach for the synthesis copper oxide nanoparticles using Hibiscus rosa-sinensis flower extracts and it’s antibacterial activities. J Bioprocess Biotech 8 (3):324.
  • Ramyadevi, J., K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A. A. Rahuman. 2012. Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters 71:114–6. doi:10.1016/j.matlet.2011.12.055.
  • Ramzan, M., R. M. Obodo, S. Mukhtar, S. Z. Ilyas, F. Aziz, and N. Thovhogi. 2020. Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity. Materials Today: Proceedings 36:576–81. doi:10.1016/j.matpr.2020.05.472.
  • Ren, G., D. Hu, E. W. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker. 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents 33 (6):587–90. doi:10.1016/j.ijantimicag.2008.12.004.
  • Rezaie, A. B., M. Montazer, and M. Mahmoudi Rad. 2017. Antibacterial, UV protective and ammonia sensing functionalized polyester fabric through in situ synthesis of cuprous oxide nanoparticles. Fibers and Polymers 18 (7):1269–79. doi:10.1007/s12221-017-7263-z.
  • Sackey, J., A. C. Nwanya, A. K. H. Bashir, N. Matinise, J. B. Ngilirabanga, A. E. Ameh, E. Coetsee, and M. Maaza. 2020. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Materials Chemistry and Physics 244:122714. doi:10.1016/j.matchemphys.2020.122714.
  • Said, M. I., A. A. Othman, and E. M. Abd Elhakeem. 2021. Structural, optical and photocatalytic properties of mesoporous CuO nanoparticles with tunable size and different morphologies. RSC Advances 11 (60):37801–13. doi:10.1039/d1ra04780a.
  • Salim, E., S. R. Bobbara, A. Oraby, and J. M. Nunzi. 2019. Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices. Synthetic Metals 252:21–8. doi:10.1016/j.synthmet.2019.04.006.
  • Sanjini, N. S., B. Winston, and S. Velmathi. 2017. Effect of precursors on the synthesis of CuO nanoparticles under microwave for photocatalytic activity towards methylene blue and rhodamine B dyes. Journal of Nanoscience and Nanotechnology 17 (1):495–501. doi:10.1166/jnn.2017.11785.
  • Santhosh Kumar, J., and V. Shanmugam. 2020. Green synthesis of copper oxide nanoparticles from Magnolia champaca floral extract and its antioxidant & toxicity assay using Danio rerio. International Journal of Recent Technology and Engineering (IJRTE) 8 (5):5444–9. doi:10.35940/ijrte.E6869.018520.
  • Saratale, R. G., G. S. Ghodake, S. K. Shinde, S. Cho, G. D. Saratale, A. Pugazhendhi, and R. N. Bharagava. 2018. Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of reactive green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer). Journal of Environmental Management 223:1086–97. doi:10.1016/j.jenvman.2018.04.072.
  • Sarwar, N., S. H. Choi, G. Dastgeer, U. B. Humayoun, M. Kumar, A. Nawaz, D. In Jeong, S. F. A. Zaidi, and D. H. Yoon. 2021. Synthesis of citrate-capped copper nanoparticles: A low temperature sintering approach for the fabrication of oxidation stable flexible conductive film. Applied Surface Science 542:148609. doi:10.1016/j.apsusc.2020.148609.
  • Shammout, M., and A. Awwad. 2021. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chemistry International 7 (1):71–8.
  • Shanmugam, P., N. Elavarasan, A. Venkatesan, K. Subashini, M. Sowndharya, and V. Sujatha. 2018. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Advanced Powder Technology 29 (12):3315–26. doi:10.1016/j.apt.2018.09.009.
  • Sharma, A., A. Kumawat, B. Raput, R. K. Khangarot, U. Valiyaneerilakkal, S. Chattopadhyay, and K. P. Misra. 2021. Effect of heavy Al doping on microstructural and morphological behavior of ZnO thin film deposited by sol-gel spin coating. AIP Conference Proceedings 2352:040001.
  • Sharma, A. A., S. C. Kumawat, R. K. Khangarot, N. Halder, R. D. Misra, and K. P. Misra. 2021. Band gap reduction and Zn related defects enhancement in Zn(Al,Ce)O nanoparticles. Materials Today: Proceedings 60:21–5.
  • Sharma, A., R. K. Khangarot, K. P. Misra, D. Misra, S. Chattopadhyay, P. D. Babu, and N. Halder. 2021. Band gap reduction and quenching of P-d exchange interaction in sol-gel derived Zn(Al,Cu)O Nanostructures. Physica Scripta 96 (7):075803. doi:10.1088/1402-4896/abf8ea.
  • Sharma, A., R. K. Khangarot, N. Kumar, S. Chattopadhyay, and K. P. Misra. 2021. Rise in UV and blue emission and reduction of surface roughness due to the presence of Ag and Al in monocrystalline ZnO films grown by sol-gel spin coating. Materials Technology 36 (9):541–51. doi:10.1080/10667857.2020.1776029.
  • Sharma, V. P., U. Sharma, M. Chattopadhyay, and V. N. Shukla. 2018. Advance applications of nanomaterials: A review. 7th International Conference of Materials Processing and Characterization, March 17–19, 5 (2, Part 1), 6376–80.
  • Siddiqui, H., M. S. Qureshi, and F. Z. Haque. 2016. Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis. Optik 127 (5):2740–7. doi:10.1016/j.ijleo.2015.11.220.
  • Singh, M., C. Zannella, V. Folliero, R. Di Girolamo, F. Bajardi, A. Chianese, L. Altucci, A. Damasco, M. R. Del Sorbo, C. Imperatore, et al. 2020. Combating actions of green 2D-materials on gram positive and negative bacteria and enveloped viruses. Frontiers in Bioengineering and Biotechnology 8:569967. doi:10.3389/fbioe.2020.569967.
  • Singh, R., R. K. Khangarot, A. K. Singh, and K. Kumar. 2022. Metal organic frameworks based nanomaterial: Synthesis and applications; Removal of heavy metal ions from waste water. In Metal nanocomposites for energy and environmental applications, 377–92. Springer.
  • Steinhauer, S. 2021. Gas sensors based on copper oxide nanomaterials: A review. Chemosensors 9 (3):51. doi:10.3390/chemosensors9030051.
  • Sukumar, S., A. Rudrasenan, and D. P. Nambiar. 2020. Green-synthesized rice-shaped copper oxide nanoparticles using Caesalpinia bonducella seed extract and their applications. ACS Omega 5 (2):1040–51. doi:10.1021/acsomega.9b02857.
  • Veisi, H., B. Karmakar, T. Tamoradi, S. Hemmati, M. Hekmati, and M. Hamelian. 2021. Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys lavandulifolia) flowers and evaluation of its catalytic activity. Scientific Reports 11 (1):1983. doi:10.1038/s41598-021-81320-6.
  • Verma, M., V. Kumar, and A. Katoch. 2018. Sputtering based synthesis of CuO nanoparticles and their structural, thermal and optical studies. Materials Science in Semiconductor Processing 76:55–60. doi:10.1016/j.mssp.2017.12.018.
  • Waris, A., M. Din, A. Ali, M. Ali, S. Afridi, A. Baset, and A. U. Khan. 2021. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorganic Chemistry Communications 123 (2021):108369. doi:10.1016/j.inoche.2020.108369.
  • Wongpisutpaisan, N., P. Charoonsuk, N. Vittayakorn, and W. Pecharapa. 2011. Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Procedia 9:404–9. doi:10.1016/j.egypro.2011.09.044.
  • Yugandhar, P., T. Vasavi, P. U. M. Devi, and N. Savithramma. 2017. Bioinspired green Synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: Characterization and evaluation of its synergistic antimicrobial and anticancer activity. Applied Nanoscience 7 (7):417–27. doi:10.1007/s13204-017-0584-9.
  • Zakharova, O. V., A. Y. Godymchuk, A. A. Gusev, S. I. Gulchenko, I. A. Vasyukova, and D. V. Kuznetsov. 2015. Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes. BioMed Research International 2015:1–11. doi:10.1155/2015/412530.
  • Zhao, X., P. Wang, Z. Yan, and N. Ren. 2015. Room temperature photoluminescence properties of CuO nanowire arrays. Optical Materials 42:544–7. doi:10.1016/j.optmat.2014.12.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.