144
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and statistical analysis of CO2 absorption in DEA/water nanofluid containing silicon dioxide nanoparticle

, , &

References

  • Azizi, S., H. T. Dezfuli, A. Kargari, and S. M. Peyghambarzadeh. 2015. Experimental measurement and thermodynamic modeling of propylene and propane solubility in n-methyl pyrrolidone (NMP). Fluid Phase Equilibria 387:190–7. doi: 10.1016/j.fluid.2014.12.031.
  • Azizi, S., S. M. Peyghambarzadeh, M. Saremi, and H. Tahmasebi. 2014. Gas absorption using a nanofluid solvent: Kinetic and equilibrium study. Heat and Mass Transfer 50 (12):1699–706. doi: 10.1007/s00231-014-1377-2.
  • Benamor, A., and M. K. Aroua. 2005. Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh–Mather model. Fluid Phase Equilibria 231 (2):150–62. doi: 10.1016/j.fluid.2005.02.005.
  • Bohloul, M., A. Vatani, and S. Peyghambarzadeh. 2014. Experimental and theoretical study of CO2 solubility in n-methyl-2-pyrrolidone (NMP). Fluid Phase Equilibria 365:106–11. doi: 10.1016/j.fluid.2013.12.019.
  • Bohloul, M., M. A. Sadeghabadi, S. Peyghambarzadeh, and M. Dehghani. 2017. CO2 absorption using aqueous solution of potassium carbonate: Experimental measurement and thermodynamic modeling. Fluid Phase Equilibria 447:132–41. doi: 10.1016/j.fluid.2017.05.023.
  • Bohloul, M., S. Peyghambarzadeh, A. Lee, and A. Vatani. 2014. Experimental and analytical study of solubility of carbon dioxide in aqueous solutions of potassium carbonate. International Journal of Greenhouse Gas Control 29:169–75. doi: 10.1016/j.ijggc.2014.08.009.
  • Brea, U., D. Gómez-Díaz, J. M. Navaza, and A. Rumbo. 2019. Carbon dioxide chemical absorption in non-aqueous solvents by the presence of water. Journal of the Taiwan Institute of Chemical Engineers 102:250–8. doi: 10.1016/j.jtice.2019.06.009.
  • Chabi, A., S. Zarrinabadi, S. Peyghambarzadeh, S. Hashemabadi, and M. Salimi. 2017. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink. Heat and Mass Transfer 53 (2):661–71. doi: 10.1007/s00231-016-1851-0.
  • Fang, X., Y. Xuan, and Q. Li. 2009. Experimental investigation on enhanced mass transfer in nanofluids. Applied Physics Letters 95 (20):203108. doi: 10.1063/1.3263731.
  • Gabrielsen, J., M. L. Michelsen, E. H. Stenby, and G. M. Kontogeorgis. 2005. A model for estimating CO2 solubility in aqueous alkanolamines. Industrial & Engineering Chemistry Research 44 (9):3348–54. doi: 10.1021/ie048857i.
  • Haghtalab, A., M. Mohammadi, and Z. Fakhroueian. 2015. Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. Fluid Phase Equilibria 392:33–42. doi: 10.1016/j.fluid.2015.02.012.
  • Haji-Sulaiman, M., M. K. Aroua, and A. Benamor. 1998. Analysis of equilibrium data of co2 in aqueous solutions of diethanolamine (DEA), methyldiethanolamine (MDEA) and their mixtures using the modified Kent Eisenberg model. Chemical Engineering Research and Design 76 (8):961–8. doi: 10.1205/026387698525603.
  • Jane, I.-S., and M.-H. Li. 1997. Solubilities of mixtures of carbon dioxide and hydrogen sulfide in water + diethanolamine + 2-amino-2-methyl-1-propanol. Journal of Chemical & Engineering Data 42 (1):98–105. doi: 10.1021/je960270q.
  • Jiang, J., B. Zhao, Y. Zhuo, and S. Wang. 2014. Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles. International Journal of Greenhouse Gas Control 29:135–41. doi: 10.1016/j.ijggc.2014.08.004.
  • Jonassen, Ø., I. Kim, and H. F. Svendsen. 2014. Heat of absorption of carbon dioxide (CO2) into aqueous n-methyldiethanolamine (MDEA) and n,n-dimethylmonoethanolamine (DMMEA). Energy Procedia 63:1890–902. doi: 10.1016/j.egypro.2014.11.198.
  • Kars, R. L., R. J. Best, and A. Drinkenburg. 1979. The sorption of propane in slurries of active carbon in water. The Chemical Engineering Journal 17 (3):201–10. doi: 10.1016/0300-9467(79)80104-5.
  • Keshishian, N., M. N. Esfahany, and N. Etesami. 2013. Experimental investigation of mass transfer of active ions in silica nanofluids. International Communications in Heat and Mass Transfer 46:148–53. doi: 10.1016/j.icheatmasstransfer.2013.05.014.
  • Khan, S. N., S. M. Hailegiorgis, Z. Man, S. Garg, A. M. Shariff, S. Farrukh, M. Ayoub, and H. Ghaedi. 2018. High-pressure absorption study of CO2 in aqueous n-methyldiethanolamine (MDEA) and MDEA-piperazine (PZ)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf] hybrid solvents. Journal of Molecular Liquids 249:1236–44. doi: 10.1016/j.molliq.2017.11.145.
  • Kim, H., J. Jeong, and Y. T. Kang. 2012. Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids. International Journal of Refrigeration 35 (3):645–51.
  • Kim, J.-K., J. Y. Jung, and Y. T. Kang. 2006. The effect of nano-particles on the bubble absorption performance in a binary nanofluid. International Journal of Refrigeration 29 (1):22–9. doi: 10.1016/j.ijrefrig.2005.08.006.
  • Kim, Y. E., J. H. Choi, S. C. Nam, and Y. I. Yoon. 2012. CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine. Journal of Industrial and Engineering Chemistry 18 (1):105–10. doi: 10.1016/j.jiec.2011.11.078.
  • Krishnamurthy, S., P. Bhattacharya, P. Phelan, and R. Prasher. 2006. Enhanced mass transport in nanofluids. Nano Letters 6 (3):419–23.
  • Lee, J. I., F. D. Otto, and A. E. Mather. 1972. Solubility of carbon dioxide in aqueous diethanolamine solutions at high pressures. Journal of Chemical & Engineering Data 17 (4):465–8. doi: 10.1021/je60055a015.
  • Lee, J. I., F. D. Otto, and A. E. Mather. 1973. Solubility of hydrogen sulfide in aqueous diethanolamine solutions at high pressures. Journal of Chemical & Engineering Data 18 (1):71–3. doi: 10.1021/je60056a012.
  • Lee, J. W., and Y. T. Kang. 2013. CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution. Energy 53:206–11. doi: 10.1016/j.energy.2013.02.047.
  • Lee, J. W., J.-Y. Jung, S.-G. Lee, and Y. T. Kang. 2011. Co2 bubble absorption enhancement in methanol-based nanofluids. International Journal of Refrigeration 34 (8):1727–33. doi: 10.1016/j.ijrefrig.2011.08.002.
  • Li, J., Y. Ye, L. Chen, and Z. Qi. 2012. Solubilities of CO2 in poly (ethylene glycols) from (303.15 to 333.15) K. Journal of Chemical & Engineering Data 57 (2):610–6. doi: 10.1021/je201197m.
  • Liu, H., X. Jiang, R. Idem, S. Dong, and P. Tontiwachwuthikul. 2022. Ai models for correlation of physical properties in system of 1DMA2P‐CO2‐H2O. AIChE Journal 68 (9):e17761.
  • Moffat, R. J. 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science 1 (1):3–17. doi: 10.1016/0894-1777(88)90043-X.
  • Nagy, E., T. Feczkó, and B. Koroknai. 2007. Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chemical Engineering Science 62 (24):7391–8. doi: 10.1016/j.ces.2007.08.064.
  • Orozco, G. A., C. Nieto-Draghi, A. D. Mackie, and V. Lachet. 2014. Equilibrium and transport properties of primary, secondary and tertiary amines by molecular simulation. Oil & Gas Science and Technology–Revue d’IFP Energies Nouvelles 69 (5):833–49. doi: 10.2516/ogst/2013144.
  • Park, S. H., K. B. Lee, J. C. Hyun, and S. H. Kim. 2002. Correlation and prediction of the solubility of carbon dioxide in aqueous alkanolamine and mixed alkanolamine solutions. Industrial & Engineering Chemistry Research 41 (6):1658–65. doi: 10.1021/ie010252o.
  • Pashaei, H., and A. Ghaemi. 2020. CO2 absorption into aqueous diethanolamine solution with nano heavy metal oxide particles using stirrer bubble column: Hydrodynamics and mass transfer. Journal of Environmental Chemical Engineering 8 (5):104110. doi: 10.1016/j.jece.2020.104110.
  • Pashaei, H., M. N. Zarandi, and A. Ghaemi. 2017. Experimental study and modeling of CO2 absorption into diethanolamine solutions using stirrer bubble column. Chemical Engineering Research and Design 121:32–43. doi: 10.1016/j.cherd.2017.03.001.
  • Peyghambarzadeh, S., S. Hashemabadi, A. Chabi, and M. Salimi. 2014. Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Conversion and Management 86:28–38. doi: 10.1016/j.enconman.2014.05.013.
  • Pineda, I. T., C. K. Choi, and Y. T. Kang. 2014. CO2 gas absorption by CH3OH based nanofluids in an annular contactor at low rotational speeds. International Journal of Greenhouse Gas Control 23:105–12. doi: 10.1016/j.ijggc.2014.02.008.
  • Pineda, I. T., J. W. Lee, I. Jung, and Y. T. Kang. 2012. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. International Journal of Refrigeration 35 (5):1402–9. doi: 10.1016/j.ijrefrig.2012.03.017.
  • Porcheron, F., A. Gibert, P. Mougin, and A. Wender. 2011. High throughput screening of CO2 solubility in aqueous monoamine solutions. Environmental Science & Technology 45 (6):2486–92. doi: 10.1021/es103453f.
  • Rahimi, M., S. M. Moosavi, B. Smit, and T. A. Hatton. 2021. Toward smart carbon capture with machine learning. Cell Reports Physical Science 2 (4):100396. doi: 10.1016/j.xcrp.2021.100396.
  • Rahmatmand, B., P. Keshavarz, and S. Ayatollahi. 2016. Study of absorption enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 nanoparticles in water and amine solutions. Journal of Chemical & Engineering Data 61 (4):1378–87. doi: 10.1021/acs.jced.5b00442.
  • Rashidi, H., and R. Sohrabi. 2019. Detailed performance model of carbon dioxide absorption utilizing titanium dioxide nanoparticles in a wetted wall column. Environmental Progress & Sustainable Energy 38 (6):13211. doi: 10.1002/ep.13211.
  • Rashidi, H., and S. Mamivand. 2022. Experimental and numerical mass transfer study of carbon dioxide absorption using Al2O3/water nanofluid in wetted wall column. Energy 238:121670. doi: 10.1016/j.energy.2021.121670.
  • Rashidi, H., and S. Sahraie. 2021. Enhancing carbon dioxide absorption performance using the hybrid solvent: Diethanolamine-methanol. Energy 221:119799. doi: 10.1016/j.energy.2021.119799.
  • Rastegar, Z., and A. Ghaemi. 2022. CO2 absorption into potassium hydroxide aqueous solution: Experimental and modeling. Heat and Mass Transfer 58 (3):365–81. doi: 10.1007/s00231-021-03115-9.
  • Ross, P. J. 1996. Taguchi techniques for quality engineering: Loss function, orthogonal experiments, parameter and tolerance design. 2nd ed. New York: McGraw-Hill.
  • Roy, R. K. 2001. Design of experiments using the Taguchi approach: 16 steps to product and process improvement. John Wiley & Sons.
  • Salari, E., S. M. Peyghambarzadeh, M. M. Sarafraz, and F. Hormozi. 2016. Boiling thermal performance of TiO2 aqueous nanofluids as a coolant on a disc copper block. Periodica Polytechnica Chemical Engineering 60 (2):106–22.
  • Salopek, B., D. Krasic, and S. Filipovic. 1992. Measurement and application of zeta-potential. Rudarsko-Geolosko-Naftni Zbornik 4 (1):147.
  • Sarafraz, M., F. Hormozi, and S. Peyghambarzadeh. 2015. Role of nanofluid fouling on thermal performance of a thermosyphon: Are nanofluids reliable working fluid? Applied Thermal Engineering 82:212–24. doi: 10.1016/j.applthermaleng.2015.02.070.
  • Taguchi, G. 1990. Introduction to quality engineering. Tokyo: Asian productivity Organization.
  • Taib, M. M., and T. Murugesan. 2012. Solubilities of CO2 in aqueous solutions of ionic liquids (ILS) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa. Chemical Engineering Journal 181–182:56–62. doi: 10.1016/j.cej.2011.09.048.
  • Valeh-E-Sheyda, P., and A. Afshari. 2019. A detailed screening on the mass transfer modeling of the CO2 absorption utilizing silica nanofluid in a wetted wall column. Process Safety and Environmental Protection 127:125–32. doi: 10.1016/j.psep.2019.05.009.
  • Valeh-E-Sheyda, P., H. Rashidi, and F. Ghaderzadeh. 2019. Integration of commercial CO2 capture plant with primary reformer stack of ammonia plant. Journal of Thermal Analysis and Calorimetry 135 (3):1899–909.
  • Vallée, G., P. Mougin, S. Jullian, and W. Fürst. 1999. Representation of CO2 and H2S absorption by aqueous solutions of diethanolamine using an electrolyte equation of state. Industrial & Engineering Chemistry Research 38 (9):3473–80. doi: 10.1021/ie980777p.
  • Veilleux, J., and S. Coulombe. 2011. A dispersion model of enhanced mass diffusion in nanofluids. Chemical Engineering Science 66 (11):2377–84. doi: 10.1016/j.ces.2011.02.053.
  • Vermahmoudi, Y., S. Peyghambarzadeh, M. Naraki, and S. Hashemabadi. 2013. Statistical analysis of nanofluid heat transfer in a heat exchange system. Journal of Thermophysics and Heat Transfer 27 (2):320–5. doi: 10.2514/1.T4062.
  • Vermahmoudi, Y., S. Peyghambarzadeh, S. Hashemabadi, and M. Naraki. 2014. Experimental investigation on heat transfer performance of Fe2O3/water nanofluid in an air-finned heat exchanger. European Journal of Mechanics-B/Fluids 44:32–41. doi: 10.1016/j.euromechflu.2013.10.002.
  • Yousefi, M., S. Azizi, S. Peyghambarzadeh, and Z. Azizi. 2020a. Experimental and thermo-kinetic study of ethane absorption in n-methyl-2-pyrrolidone solvent. Journal of Separation Science and Engineering 12 (1):97–113.
  • Yousefi, M., S. Azizi, S. Peyghambarzadeh, and Z. Azizi. 2020b. Experimental study and thermodynamic modelling of ethylene absorption in n-methyl-2-pyrrolidone (NMP). Applied Petrochemical Research 10 (2):95–105. doi: 10.1007/s13203-020-00249-5.
  • Yousefi, M., S. Azizi, S. Peyghambarzadeh, and Z. Azizi. 2020c. Intensification of ethylene and ethane absorption in n-methyl-2-pyrrolidone (NMP) by adding silver nanoparticles. Chemical Engineering and Processing-Process Intensification 158:108184. doi: 10.1016/j.cep.2020.108184.
  • Yousefi, M., S. Azizi, S. Peyghambarzadeh, and Z. Azizi. 2021a. Ethylene absorption in n-methyl-2-pyrrolidone/silver nano-solvent: Thermodynamics and kinetics study. Chinese Journal of Chemical Engineering 36:57–66. doi: 10.1016/j.cjche.2020.08.017.
  • Yousefi, M., S. Azizi, S. Peyghambarzadeh, and Z. Azizi. 2022. Estimation of binary interaction parameters of different equations of state using ethane experimental solubility data in n-methyl-2-pyrrolidone (NMP) solvent. Chemical Papers 76 (3):1789–801. doi: 10.1007/s11696-021-01972-6.
  • Yousefi, M., S. Azizi, S. M. Peyghambarzadeh, and Z. Azizi. 2021b. Solubility of ethylene in n-methyl-2-pyrrolidone: Experimental study and estimation of UNIQUAC activity model parameters. Korean Journal of Chemical Engineering 38 (4):852–61. doi: 10.1007/s11814-020-0671-6.
  • Zangeneh, A., A. Vatani, Z. Fakhroeian, and S. Peyghambarzadeh. 2016. Experimental study of forced convection and subcooled flow boiling heat transfer in a vertical annulus using different novel functionalized ZnO nanoparticles. Applied Thermal Engineering 109:789–802. doi: 10.1016/j.applthermaleng.2016.08.056.
  • Zhang, Y., B. Zhao, J. Jiang, Y. Zhuo, and S. Wang. 2016. The use of TiO2 nanoparticles to enhance CO2 absorption. International Journal of Greenhouse Gas Control 50:49–56. doi: 10.1016/j.ijggc.2016.04.014.
  • Zhou, Z., E. Davoudi, and B. Vaferi. 2021. Monitoring the effect of surface functionalization on the CO2 capture by graphene oxide/methyl diethanolamine nanofluids. Journal of Environmental Chemical Engineering 9 (5):106202. doi: 10.1016/j.jece.2021.106202.
  • Ziabakhsh-Ganji, Z., and H. Kooi. 2012. An equation of state for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in subsurface CO2 storage. International Journal of Greenhouse Gas Control 11:S21–S34. doi: 10.1016/j.ijggc.2012.07.025.
  • Zuo, Y.-X., and W. Fürst. 1998. Use of an electrolyte equation of state for the calculation of vapor–liquid equilibria and mean activity coefficients in mixed solvent electrolyte systems. Fluid Phase Equilibria 150–151:267–75. doi: 10.1016/S0378-3812(98)00326-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.