292
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Study on effect of nanobubble on ultra-fine flake graphite (UFG) flotation

, ORCID Icon &

Reference

  • Arregui-Mena, J. D., R. N. Worth, G. Hall, P. D. Edmondson, A. B. Giorla, and T. D. Burchell. 2020. A review of finite element method models for nuclear graphite applications. Archives of Computational Methods in Engineering 27 (1):331–50. doi:10.1007/s11831-018-09310-y.
  • Bird, E., and Z. Liang. 2022. Nanobubble capillary force between parallel plates. Physics of Fluids 34 (1):013301. doi:10.1063/5.0075962.
  • Bu, X., T. Zhang, Y. Chen, Y. Peng, G. Xie, and E. Wu. 2018. Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite. Physicochemical Problems of Mineral Processing 54 (3):732–40. doi:10.5277/ppmp1873.
  • Bu, X., T. Zhang, Y. Peng, G. Xie, and E. Wu. 2018. Multi-stage flotation for the removal of ash from fine graphite using mechanical and centrifugal forces. Minerals 8 (1):15. doi:10.3390/min8010015.
  • Calgaroto, S., A. Azevedo, and J. Rubio. 2015. Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing 137:64–70. doi:10.1016/j.minpro.2015.02.010..
  • Chehreh Chelgani, S., M. Rudolph, R. Kratzsch, D. Sandmann, and J. Gutzmer. 2016. A review of graphite beneficiation techniques. Mineral Processing and Extractive Metallurgy Review 37 (1):58–68. doi:10.1080/08827508.2015.1115992.
  • Das, P., S. Sinhamahapatra, K. Dana, and S. Mukhopadhyay. 2020. Improvement of thermal conductivity of carbonaceous matrix in monolithic Al2O3–C refractory composite by surface-modified graphites. Ceramics International 46 (18):29173–81. doi:10.1016/j.ceramint.2020.08.090.
  • Davidson, L., and E. H. Amick. 1956. Formation of gas bubbles at horizontal orifices. AIChE Journal 2 (3):337–42. doi:10.1002/aic.690020309.
  • Dolan, K., G. Zheng, D. Carpenter, S. Huang, and L.-W. Hu. 2020. Tritium content and chemical form in nuclear graphite from molten fluoride salt irradiations. Fusion Science and Technology 76 (4):398–403. doi:10.1080/15361055.2020.1712993.
  • Fan, M., D. Tao, R. Honaker, and Z. Luo. 2010. Nanobubble generation and its applications in froth flotation (part III): specially designed laboratory scale column flotation of phosphate. Mining Science and Technology 20 (3):317–38. doi:10.1016/s1674-5264(09)60205-2.
  • Hampton, M. A., and A. V. Nguyen. 2009. Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive. Journal of Colloid and Interface Science 333 (2):800–6. doi:10.1016/j.jcis.2009.01.035.
  • Hampton, M. A., and A. V. Nguyen. 2010. Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science 154 (1–2):30–55. doi:10.1016/j.cis.2010.01.006.
  • Ishida, N., T. Inoue, M. Miyahara, and K. Higashitani. 2000. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16 (16):6377–80. doi:10.1021/la000219r.
  • Jara, A. D., A. Betemariam, G. Woldetinsae, and J. Y. Kim. 2019. Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology 29 (5):671–89. doi:10.1016/j.ijmst.2019.04.003.
  • Kang, W., and H. Li. 2019. Enhancement of flaky graphite cleaning by ultrasonic treatment. Royal Society Open Science 6 (12):191160. doi:10.1098/rsos.191160.
  • Kayakool, F. A., B. Gangaja, S. Nair, and D. Santhanagopalan. 2021. Li-based all-carbon dual-ion batteries using graphite recycled from spent Li-ion batteries. Sustainable Materials and Technologies 28: E 00262. doi:10.1016/j.susmat.2021.e00262.
  • Kim, S., Y. Yoon, G. M. Narejo, M. Jung, K. J. Kim, and Y. Kim. 2021. Flexible graphite bipolar plates for vanadium redox flow batteries. International Journal of Energy Research 45 (7):11098–108. doi:10.1002/er.6592.
  • Knüpfer, P., L. Ditscherlein, and U. A. Peuker. 2017. Nanobubble enhanced agglomeration of hydrophobic powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects 530:117–23. doi:10.1016/j.colsurfa.2017.07.056.
  • Li, C., and H. Zhang. 2022. Surface nanobubbles and their roles in flotation of fine particles – a review. Journal of Industrial and Engineering Chemistry 106:37–51. doi:10.1016/j.jiec.2021.11.009.
  • Li, C., M. Xu, Y. Xing, H. Zhang, and U. Alexander Peuker. 2020. Efficient separation of fine coal assisted by surface nanobubbles. Separation and Purification Technology 249:117163. doi:10.1016/j.seppur.2020.117163.
  • Ma, F., and D. Tao. 2022. A study of mechanisms of nanobubble-enhanced flotation of graphite. Nanomaterials 12 (19):3361. doi:10.3390/nano12193361..
  • Ma, F., D. Tao, and Y. Tao. 2022. Effects of nanobubbles in column flotation of Chinese sub-bituminous coal. International Journal of Coal Preparation and Utilization 42 (4):1126–42. doi:10.1080/19392699.2019.1692340.
  • Ma, F., D. Tao, Y. Tao, and S. Liu. 2021. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation. International Journal of Mining Science and Technology 31 (6):1063–74. doi:10.1016/j.ijmst.2021.06.005.
  • Parker, J. L., P. M. Claesson, and P. Attard. 1994. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. The Journal of Physical Chemistry 98 (34):8468–80. doi:10.1021/j100085a029.
  • Peng, W., H. Li, Y. Hu, Y. Liu, and S. Song. 2016. Characterisation of reduced graphene oxides prepared from natural flaky, lump and amorphous graphites. Materials Research Bulletin 78:119–27. doi:10.1016/j.materresbull.2016.02.034.
  • Sada, E., A. Yasunishi, S. Katoh, and M. Nishioka. 1978. Bubble formation in flowing liquid. The Canadian Journal of Chemical Engineering 56 (6):669–72. doi:10.1002/cjce.5450560603.
  • Sarath Chandra, K., and D. Sarkar. 2021. Structural properties of Al2O3-MgO-C refractory composites improved with YAG nanoparticle hybridized expandable graphite. Materials Science and Engineering: A 803:140502. doi:10.1016/j.msea.2020.140502.
  • Shi, Q., X. Liang, Q. Feng, Y. Chen, and B. Wu. 2015. The relationship between the stability of emulsified diesel and flotation of graphite. Minerals Engineering 78:89–92. doi:10.1016/j.mineng.2015.04.014.
  • Sobhy, A., and D. Tao. 2013. Nanobubble column flotation of fine coal particles and associated fundamentals. International Journal of Mineral Processing 124:109–16. doi:10.1016/j.minpro.2013.04.016.
  • Sobhy, A., Z. Wu, and D. Tao. 2021. Statistical analysis and optimization of reverse anionic hematite flotation integrated with nanobubbles. Minerals Engineering 163:106799. doi:10.1016/j.mineng.2021.106799.
  • Song, B., W. Walczyk, and H. Schönherr. 2011. Contact angles of surface nanobubbles on mixed self-assembled monolayers with systematically varied macroscopic wettability by atomic force microscopy. Langmuir 27 (13):8223–32. doi:10.1021/la2014896.
  • Song, Y., S. Zeng, J. Ma, and J. Hou. 2020. A numerical study on influence of temperature on lubricant film characteristics of the piston/cylinder interface in axial piston pump. Engineering Failure Analysis 108:104259. doi:10.1016/j.engfailanal.2019.104.
  • Szczypinski-Sala, W., and J. Lubas. 2020. Tribological characteristic of a ring seal with graphite filler. Materials 13 (2):311. doi:10.3390/ma13020311.
  • Tao, D., Z. Wu, and A. Sobhy. 2021. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder Technology 379:12–25. doi:10.1016/j.powtec.2020.10.040.
  • Wang, X., S. Yuan, J. Liu, Y. Zhu, and Y. Han. 2022. Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism. Journal of Molecular Liquids 346:118312. doi:10.1016/j.molliq.2021.118312.
  • Yu, D., L. Cheng, M. Chen, J. Wang, W. Zhou, W. Wei, and H. Wang. 2019. A high-performance phosphorus-graphite dual-ion battery. ACS applied Materials & Interfaces 11 (49):45755–62. doi:10.1021/acsami.9b16819.
  • Zhang, M., P. Li, W. Yao, Z. Xu, and R. Fan. 2022. Enhanced kaolinite flotation using amine coated nanobubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 638:128296. doi:10.1016/j.colsurfa.2022.128296.
  • Zhou, W., C. Wu, H. Lv, B. Zhao, K. Liu, and L. Ou. 2020. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation. Applied Surface Science 508:145282. doi:10.1016/j.apsusc.2020.145282.
  • Zhou, W., H. Chen, L. Ou, and Q. Shi. 2016. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation. International Journal of Mineral Processing 157:236–40. doi:10.1016/j.minpro.2016.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.