94
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Utilizing the high intensity conditioning process with a multi-bladed impeller to enhance the flotation of fine-grained galena

, , , &

References

  • Araujo, V. A., N. Lima, A. Azevedo, L. Bicalho, and J. Rubio. 2020. Column reverse rougher flotation of iron bearing fine tailings assisted by HIC and a new cationic collector. Minerals Engineering 156:106531. doi: 10.1016/j.mineng.2020.106531.
  • Barani, K., M. Godarzi, and F. Moradpouri. 2022. Improving the lead flotation recovery at Lakan lead-zinc processing plant using high-intensity conditioning. Journal of the Southern African Institute of Mining and Metallurgy 122 (4):173–79. doi: 10.17159/2411-9717/1968/2022.
  • Barnes, H. A. 1989. Shear‐thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. Journal of Rheology 33 (2):329–66. doi: 10.1122/1.550017.
  • Bliatsiou, C., A. Malik, L. Böhm, and M. Kraume. 2019. Influence of impeller geometry on hydromechanical stress in stirred liquid/liquid dispersions. Industrial & Engineering Chemistry Research 58 (7):2537–50. doi: 10.1021/acs.iecr.8b03654.
  • Camp, T. P., and P. C. Stein. 1943. Velocity gradients and internal work in fluid motion. Journal of Boston Society of Civil Engineering 30:219–37.
  • Chen, L., Y. Li, B. Chen, P. Wang, S. Zheng, and W. Zhang. 2022. CFD modeling of the turbulent dispersion of liquid droplets in a vessel using a correlation based on local droplet size distribution. Chemical Engineering Communications 209 (11):1496–511. doi: 10.1080/00986445.2021.1978074.
  • Feng, D., and C. Aldrich. 2000. A comparison of the flotation of ore from the Merensky reef after wet and dry grinding. International Journal of Mineral Processing 60 (2):115–29. doi: 10.1016/S0301-7516(00)00010-7.
  • Feng, D., and C. Aldrich. 2005. Effect of preconditioning on the flotation of coal. Chemical Engineering Communications 192 (7):972–83. doi: 10.1080/009864490521534.
  • Fu, Y., B. Yang, Y. Ma, Q. Sun, J. Yao, W. Fu, and W. Yin. 2020. Effect of particle size on magnesite flotation based on kinetic studies and machine learning simulation. Powder Technology 376:486–95. doi: 10.1016/j.powtec.2020.08.054.
  • Huang, G., J. Liu, L. Wang, and Z. Song. 2016. Flow field simulation of agitating tank and fine coal conditioning. International Journal of Mineral Processing 148:116–23. doi: 10.1016/j.minpro.2016.01.020.
  • Huang, G., J. Xu, K. Li, Q. Qi, L. Sun, S. Wan, P. Jiang, and R. Wang. 2022. Mechanism of conditioning on improving fine coal flotation. Journal of China Coal Society 47 (S1):246–56. doi: 10.13225/j.cnki.jccs.fx21.1132.
  • Jia, X., Y. Yu, J. Liu, C. Min, F. Liu, N. Zhang, S. Chen, and Z. Zhu. 2023. Changes in surface hydrophobicity of coal particles and the formation of coarse particle–bubble clusters in the process of high-intensity conditioning. Processes 11 (6):1723. doi: 10.3390/pr11061723.
  • Kang, J., Y. An, J. Xue, X. Ma, J. Li, F. Chen, S. Wang, H. Wan, C. Zhang, and X. Bu. 2023. Density functional theory study of the electronic structures of galena. Processes 11 (2):619. doi: 10.3390/pr11020619.
  • Kumar, H., K. Luolavirta, S. U. Akram, H. Mehmood, and S. Luukkanen. 2021. The effect of hydrodynamic conditions on the selective flotation of fully liberated low-grade copper-nickel ore. Minerals 11 (3):328. doi: 10.3390/min11030328.
  • Li, J. 2015. The study on collision probability and fluid characteristic of high intensity condition. PhD diss., Beijing: China University of Mining and Technology (Beijing). https://cdmd.cnki.com.cn/Article/CDMD-11413-1015304589.htm.
  • Li, Z., and J. Liu. 2017. Stirred pulp-mixing in flotation: Process intensification and application. Xuzhou, China: China University of Mining and Technology Press.
  • Lin, Q., G. Gu, X. Chen, S. Deng, B. Xu, and L. Li. 2018. Flotation kinetics of molybdenite fines. Journal of Central South University (Science and Technology) 49 (7):1573–81.
  • Prasad, K. V., and K. R. Jayadevan. 2016. Simulation of stirring in stir casting. Procedia Technology 24:356–63. doi: 10.1016/j.protcy.2016.05.048.
  • Shen, Z., and Q. Zhang. 2022. Hydrophobic agglomeration behavior of rhodochrosite fines co-induced by oleic acid and shearing. Separation and Purification Technology 282:120115. doi: 10.1016/j.seppur.2021.120115.
  • Song, S., A. Lopez-Valdivieso, J. L. Reyes-Bahena, and H. I. Bermejo-Perez. 2001. Hydrophobic flocculation of sphalerite fines in aqueous suspensions induced by ethyl and amyl xanthates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 181 (1–3):159–69. doi: 10.1016/S0927-7757(00)00789-5.
  • Song, S., A. Lopez-Valdivieso, J. L. Reyes-Bahena, H. I. Bermejo-Perez, and O. Trass. 2000. Hydrophobic flocculation of galena fines in aqueous suspensions. Journal of Colloid and Interface Science 227 (2):272–81. doi: 10.1006/jcis.2000.6857.
  • Su, C., B. Pei, P. Shen, Q. Zheng, J. Cai, and D. Liu. 2023. Effect of sodium butyl xanthate on the adsorption behavior of L-cysteine on the surface of galena. Colloids and Surfaces A: Physicochemical and Engineering Aspects 679:132559. doi: 10.1016/j.colsurfa.2023.132559.
  • Sun, Y., G. Xie, Y. Peng, Y. Chen, and G. Ma. 2019. How does high intensity conditioning affect flotation performance? International Journal of Coal Preparation and Utilization 39 (6):302–16. doi: 10.1080/19392699.2017.1316717.
  • Tan, Z., L. Yang, Z. Wang, X. Dou, D. Zhang, M. Zhang, and Y. Jin. 2021. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field. CIESC Journal 72 (4):2203–12.
  • Wang, D., and Q. Liu. 2021. Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review. Minerals Engineering 173:107220. doi: 10.1016/j.mineng.2021.107220.
  • Xue, J., D. Ren, T. Chen, X. Bu, H. Wan, Z. Song, and C. Zhao. 2021. Hydrophobic agglomeration flotation of oxidized digenite fine particles induced by Na2S and butyl xanthate. Minerals Engineering 168:106932. doi: 10.1016/j.mineng.2021.106932.
  • Yang, L. 2020. Study on the intensification mechanism of conditioning process based on turbulent field characteristics. PhD diss., Xuzhou: China University of Mining and Technology. doi: 10.27623/d.cnki.gzkyu.2020.000737.
  • Yang, L., W. Li, X. Li, X. Yan, and H. Zhang. 2020. Effect of the turbulent flow pattern on the interaction between dodecylamine and quartz. Applied Surface Science 507:145012. doi: 10.1016/j.apsusc.2019.145012.
  • Yang, L., Z. Zhu, X. Qi, X. Yan, and H. Zhang. 2018. The process of the intensification of coal fly ash flotation using a stirred tank. Minerals 8 (12):597. doi: 10.3390/min8120597.
  • Yu, Y., J. Liu, X. Jia, C. Min, F. Liu, N. Zhang, S. Chen, Z. Zhu, and A-n Zhou. 2022. A new perspective on the understanding of high-intensity conditioning: Incompatibility of conditions required for coarse and fine coal particles. Mineral Processing and Extractive Metallurgy Review. doi: 10.1080/08827508.2022.2152019.
  • Zeng, K. 2001. Theory and application study on the effect of pulp turbulence degree in flotation cell on flotation. PhD diss., Changsha: Central South University. https://cdmd.cnki.com.cn/article/cdmd-10533-2004116221.htm.
  • Zhai, Q., R. Liu, J. Li, W. Sun, and Y. Hu. 2023. Changing the pulp properties and surface hydrophilicity of galena and pyrite by selecting the appropriate grinding media towards their selective separation. Minerals 13 (9):1213. doi: 10.3390/min13091213.
  • Zhang, C., T. He, H. Li, and X. Bu. 2019. Adsorption thermodynamics and kinetics of xanthate at chalcopyrite surface based on ultraviolet spectrophotometry. Spectroscopy and Spectral Analysis 39 (10):3172–8. doi: 10.3964/j.issn.1000-0593(2019)10-3172-07.
  • Zhang, H., H. Wang, R. Chen, X. Yan, K. Zheng, D. Li, and S. Jiang. 2022. Turbulence enhancement mechanism of coal slime pulp conditioning and new type vortex enhancing pulp conditioning process. Journal of China Coal Society 47 (2):934–44. doi: 10.13225/j.cnki.jccs.XR21.1751.
  • Zhang, J., and N. Subasinghe. 2016. Development of a flotation model incorporating liberation characteristics. Minerals Engineering 98:1–8. doi: 10.1016/j.mineng.2016.05.021.
  • Zhang, Y., R. Liu, W. Sun, L. Wang, Y. Dong, and C. Wang. 2020. Electrochemical mechanism and flotation of chalcopyrite and galena in the presence of sodium silicate and sodium sulfite. Transactions of Nonferrous Metals Society of China 30 (4):1091–101. doi: 10.1016/S1003-6326(20)65280-3.
  • Zhao, J., Y. Hu, J. Liu, and J. Wang. 2022. Hydrophobic flocculation of coal particles controlled by mechanical stirring. Mineral Processing and Extractive Metallurgy Review 44 (8):565–70. doi: 10.1080/08827508.2022.2104271.
  • Zhou, H., J. Hu, Y. Zhang, Y. Cao, X. Luo, and X. Tang. 2020. Effectively enhancing recovery of fine spodumene via aggregation flotation. Rare Metals 39 (3):316–26. doi: 10.1007/s12598-019-01365-5.
  • Zhuo, Q., W. Liu, X. Jiao, H. Xu, and X. Sun. 2022. Evolution of coal flocs during flocculation under different stirring velocities. International Journal of Coal Preparation and Utilization 42 (9):2820–34. doi: 10.1080/19392699.2021.1908273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.