146
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Segregation of binary particles in pulsed gas-solid fluidized bed

, &

References

  • Aditya, A., R. A. Cocco, and J. W. Chew. 2018. Evaluation of correlations for minimum fluidization velocity (UMF) in gas-solid fluidization. doi:10.1016/j.powtec.2017.10.016.
  • Akhavan, A., J. R. van Ommen, J. Nijenhuis, X. S. Wang, M.-O. Coppens, and M. J. Rhodes. 2009. Improved drying in a pulsation assisted fluidized bed. Industrial & Engineering Chemistry Research 48 (1):302–9. doi:10.1021/ie800458h.
  • Ali, S. S., and M. Asif. 2012. Fluidization of nano-powders: Effect of flow pulsation. Powder Technology 225:86–92. doi:10.1016/j.powtec.2012.03.035.
  • Alobaid, F., N. Almohammed, M. M. Farid, J. May, P. Rößger, A. Richter, and B. Epple. 2022. Progress in CFD simulations of fluidized beds for chemical and energy process engineering. Progress in Energy and Combustion Science 91:100930. doi:10.1016/j.pecs.2021.100930.
  • Andreotti, B., Forterre, Y., Pouliquen, O. 2013. Granular media between fluid and solid.
  • Asif, M. 2010. Minimum fluidization velocities of binary-solid mixtures: Model comparison. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 4:243–7.
  • Bizhaem, H. K., and H. B. Tabrizi. 2013. Experimental study on hydrodynamic characteristics of gas–solid pulsed fluidized bed. Powder Technology 237:14–23.
  • Cano-Pleite, E., F. Hernández-Jiménez, A. Acosta-Iborr, T. Tsuji, and C. R. Müller. 2017. Segregation of equal-sized particles of different densities in a vertically vibrated fluidized bed. Powder Technology 316:101–10. doi:10.1016/j.powtec.2017.01.007.
  • Charan, T. G., U. S. Chattopadhyay, K. M. P. Singh, S. K. Kabiraj, and D. D. Haldar. 2011. Beneficiation of high-ash, Indian non-coking coal by dry jigging. Mining, Metallurgy & Exploration 28 (1):21–3. doi:10.1007/BF03402320.
  • Chen, F., D. Jelagin, and M. N. Partl. 2020. Vibration-induced aggregate segregation in asphalt mixtures. Materials and Structures 53 (2):27. doi:10.1617/s11527-020-01459-y.
  • Devahastin, S., and A. S. Mujumdar. 2001. Some hydrodynamic and mixing characteristics of a pulsed spouted bed dryer. Powder Technology 117 (3):189–97. doi:10.1016/S0032-5910(00)00380-6.
  • Di Felice, R. 1994. The void-age function for fluid-particle interaction systems. International Journal of Multiphase Flow 20 (1):153–9. doi:10.1016/0301-9322(94)90011-6.
  • Di Renzo, A., G. Rito, and F. P. Di Maio. 2020. Systematic experimental investigation of segregation direction and layer inversion in binary liquid-fluidized bed. Processes 8 (2):177. doi:10.3390/pr8020177.
  • Dong, L., Y. Zhang, Y. Zhao, H. Wang, Y. Wang, Z. Luo, H. Jiang, X. Yang, C. Duan, and B. Zhang. 2015. Deash and desulfurization of fine coal using a gas-vibro fluidized bed. Fuel 155:55–62. doi:10.1016/j.fuel.2015.03.073.
  • Dong, L., Y. Zhao, L. Peng, J. Zhao, Z. Luo, Q. Liu, and C. Duan. 2015. Characteristics of pressure fluctuations and fine coal preparation in gas-vibro fluidized bed. Particuology 21:146–53. doi:10.1016/j.partic.2014.08.011.
  • Ehrichs, E. E., H. M. Jaeger, G. S. Karczmar, J. B. Knight, V. Y. Kuperman, and S. R. Nagel. 1995. Granular convection observed by magnetic resonance imaging. Science (New York, N.Y.) 267 (5204):1632–4. doi:10.1126/science.267.5204.1632.
  • Feng, Y. Q., and A. B. Yu. 2008. An analysis of the chaotic motion of particles of different sizes in a gas fluidized bed. Particuology 6 (6):549–56. doi:10.1016/j.partic.2008.07.011.
  • Feng, Y. Q., S. J. Zhang, B. H. Xu, A. B. Yu, and P. Zulli. 2004. Discrete particle simulation of gas fluidization of particle mixtures. AIChE Journal 50 (8):1713–28. doi:10.1002/aic.10169.
  • Frankowski, P., and M. Morgeneyer. 2013. Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements. AIP Conference Proceedings 1542:851–4. doi:10.1063/1.4812065.
  • Formisani, B., R. Girimonte, and T. Longo. 2008. The fluidization process of binary mixtures of solids: Development of the approach based on the fluidization velocity interval. Powder Technology 185:97–108. doi:10.1016/j.powtec.2007.10.003.
  • Hadi, B., J. R. Ommen, and M. O. Coppens. 2012. Enhanced particle mixing in pulsed fluidized beds and the effect of internals. Industrial & Engineering Chemistry Research 51 (4):1713–20. doi:10.1021/ie200933k.
  • Hanak, D. P., C. Biliyok, and V. Manovic. 2016. Calcium looping with inherent energy storage for decarbonisation of coal-fired power plant. Energy & Environmental Science 9 (3):971–83. doi:10.1039/C5EE02950C.
  • Hao, H., Z. W. Liu, F. Q. Zhao, J. Y. Du, and Y. S. Chen. 2017. Coalderived alternative fuels for vehicle use in China: A review. Journal of Cleaner Production 141:774–90. doi:10.1016/j.jclepro.2016.09.137.
  • Jia, D. N., X. T. Bi, C. J. Lim, S. Sokhansanj, and A. Tsutsumi. 2017. Heat transfer in a pulsed fluidized bed of biomass particles. Industrial & Engineering Chemistry Research 56 (13):3740–56. doi:10.1021/acs.iecr.6b04444.
  • Kadak, A. C., and M. Z. Bazant. 2004. Pebble Flow Experiments for Pebble Bed Reactors. In 2nd International Topical Meeting on High Temperature Reactor Technology, Massachusetts Institute of Technology Nuclear Engineering Department, Beijing, China, September 22–24.
  • Khakhar, D. V., J. J. McCarthy, and J. M. Ottino. 2013. Radial segregation of granular mixtures in rotating cylinders. doi:10.1063/1.869498.
  • Kloss, C., and C. Goniva. 2011. Open Source Discrete Element Simulations of Granular Materials Based on Lammps. Supplemental Proceedings 2:781–88. doi:10.1002/9781118062142.ch94.
  • Kwant, G., W. Prins, and W. P. M. van Swaaij. 1995. Particle mixing and separation in a binary solids floating fluidized bed. Powder Technology 82:279–91. doi:10.1016/0032-5910(94)02937-J.
  • Lacaze, L., J. C. Phillips, and R. R. Kerswell. 2008. Planar collapse of a granular column: Experiments and discrete element simulations. Physics of Fluids 20 (6). doi:10.1063/1.2929375.
  • Lassaad, H., N. Mathieu, and C. Mohamed. 2020. DEM simulation of drained triaxial tests for glass-beads. Powder Technology 364:123–34. doi:10.1016/j.powtec.2019.09.095.
  • Laubach, S. E., R. A. Marrett, J. E. Olson, and A. R. Scott. 1998. Characteristics and origins of coal cleat: A review, characteristics and origins of coal cleat: A review. International Journal of Coal Geology 35 (1-4):175–207. doi:10.1016/S0166-5162(97)00012-8.
  • Lee, J.-H., S.-S. Lee, J.-D. Chang, M. S. Thompson, D.-J. Kang, S. Park, and S. Park. 2013. A novel method for the accurate evaluation of Poisson’s ratio of soft polymer materials doi:10.1155/2013/930798.
  • Lehmann, S. E., E. U. Hartge, A. Jongsma, I. M. Deleeuw, F. Innings, and S. Heinrich. 2019. Fluidization characteristics of cohesive powders in vibrated fluidized bed drying at low vibration frequencies. Powder Technology 357:54–63. doi:10.1016/j.powtec.2019.08.105.
  • Li, Y., L. Du, Y. Zhao, Z. Wang, F. Zhu, Z. Lu, C. Duan, L. Dong, and C. Zhou. 2021. Segregation and mixing behavior of gold art D binary particles in pulsed gas-solid fluidized bed. Particulate Science and Technology 40 (4):434–44. doi:10.1080/02726351.2021.1954116.
  • Li, L., H. J. Fan, and H. Q. Hu. 2017. Distribution of hydroxyl group in coal structure: A theoretical investigation. Fuel 189:195–202. doi:10.1016/j.fuel.2016.10.091.
  • Li, Z., Y. H. Fu, A. N. Zhou, C. Y. Zhu, C. Yang, N. Shen, and C. Yang. 2019. Effect of multi-intensification on the liberation of maceral components in coal. Fuel 237:1003–12. doi:10.1016/j.fuel.2018.10.024.
  • Li, Y., C. Zhou, G. Lv, Y. Ren, Y. Zhao, Q. Liu, Z. Rao, and L. Dong. 2021. Prediction of minimum fluidization velocity in pulsed gas–solid fluidized bed. Chemical Engineering Journal doi:10.1016/j.cej.2020.127965.
  • Lim, E. W. C. 2023. Mixing behaviors of dry and wet particles in a pulsating fluidized bed. doi:10.1021/acs.iecr.3c03100.
  • Lim, L. J. J., and E. W. C. Lim. 2019. Mixing and segregation behaviors of a binary mixture in a pulsating fluidized bed. Powder Technology 345:311–28. doi:10.1016/j.powtec.2019.01.026.
  • Lv, B., Z. F. Luo, and B. Zhang. 2018. Fluidization and separation characteristics of gas–solid separation fluidized bed with wet coal. Fuel 219:492–501. doi:10.1016/j.fuel.2018.01.071.
  • Ma, H., and Y. Zhao. 2018. CFD-DEM investigation of the fluidization of binary mixtures containing rod-like particles and spherical particles in a fluidized bed. Powder Technology 336:533–545 doi:10.1016/j.powtec.2018.06.034.
  • Middleton, G. V. 1970. Experimental studies related to problems of flysch sedimentation. In Flysch Sedimentology in North America, ed. J. Lajoie, 253–72. Toronto: Business Economics.
  • Mukhopadhyay, S., P. K. Das, and N. Abani. 2023. A theoretical model to predict normal contact characteristics for elasto-plastic collisions. Granular Matter 25 (2):20. doi:10.1007/s10035-023-01307-0.
  • Otsubo, M., C. O'Sullivan, and T. Shire. 2017. Empirical assessment of the critical time increment in explicit particulate discrete element method simulations. Computers and Geotechnics 86:67–79. doi:10.1016/j.compgeo.2016.12.022.
  • Sahu, A. K., A. Tripathy, and S. K. Biswal. 2013. Study on particle dynamics in different cross-sectional shapes of air dense medium fluidized bed separator. Fuel 111:472–7. doi:10.1016/j.fuel.2013.04.011.
  • Saidi, M., H. B. Tabrizi, S. Chaichi, and M. Dehghani. 2014. Pulsating flow effect on the segregation of binary particles in a gas–solid fluidized bed. Powder Technology 264:570–6. doi:10.1016/j.powtec.2014.06.003.
  • Savage, S. B., and C. K. K. Lun. 1988. Particle size segregation in inclined chute flow of dry cohesionless granular solids. Journal of Fluid Mechanics 189:311–35. doi:10.1017/S002211208800103X.
  • Scott, A. M., and J. Bridgwater. 1975. Interparticle percolation: A fundamental solids mixing mechanism. Industrial & Engineering Chemistry Fundamentals 14 (1):22–7. doi:10.1021/i160053a004.
  • Shen, Z., G. Wang, D. Huang, and F. Jin. 2022. A resolved CFD-DEM coupling model for modeling two-phase fluids interaction with irregularly shaped particles. Journal of Computational Physics 448:110695. doi:10.1016/j.jcp.2021.110695.
  • Siemens. 2021. STAR-CCM + Users Guide, Release 16.02.008. Melville, New York.
  • Sommerfeld, M. 2000. Theoretical and experimental modeling of particulate flows. Technical Report Lecture Series 2000-06, 20–3. von Karman Institute for Fluid Dynamics, Belguim.
  • Tripathi, A., and D. V. Khakhar. 2013. Density difference-driven segregation in a dense granular flow doi:10.1017/jfm.2012.603.
  • Wang, B., T. Tang, S. Yan, and Y. He. 2009. Magnetic segregation behaviors of a binary mixture in fluidized beds. Powder Technology 397:117031. doi:10.1016/j.powtec.2021.117031.
  • Wang, T., F. Zhang, J. Furtney, and B. Damjanac. 2022. A review of methods, applications, and limitations for incorporating fluid flow in the discrete element method,Zhang, Y., B. Jin, and W. Zhong. Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed. Chemical Engineering and Processing: Process Intensification 48 (3):745–54. doi:10.1016/j.cep.2008.09.004. doi:10.1016/j.jrmge.2021.10.015.
  • Zhang, Y., B. Jin, and W. Zhong. 2009. Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed. Chemical Engineering and Processing: Process Intensification 48 (3):745–54. doi:10.1016/j.cep.2008.09.004.
  • Zhang, Y. D., Y. J. Li, L. Dong, Y. M. Zhao, Z. L. Gao, C. L. Duan, Q. X. Liu, and X. L. Yang. 2018. Characterization of temporal and spatial distribution of bed density in vibrated gas-solid fluidized bed. Advanced Powder Technology 29 (11):2591–600. doi:10.1016/j.apt.2018.07.003.
  • Zhang, K., S. Wang, Y. Tang, and Y. He. 2019. Prediction of segregation behavior of binary mixture in a pulsed fluidized bed. Advanced Powder Technology 30 (11):2659–65. doi:10.1016/j.apt.2019.08.013.
  • Zhou, E., Y. Zhang, Y. Zhao, Z. Luo, X. Yang, C. Duan, L. Dong, and Z. Fu. 2018. Effect of vibration energy on fluidization and 1–6 mm coal separation in a vibrated dense medium fluidized bed. Separation Science and Technology 53 (14):2297–313. doi:10.1080/01496395.2018.1445757.
  • Zhu, H. P., Z. Y. Zhou, R. Y. Yang, and A. B. Yu. 2007. Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Sciences 62 (13):3378–96. doi:10.1016/j.ces.2006.12.089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.