104
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quaternary nanorods: promising versatile agents for cancer therapy, antimicrobial strategies and free radical neutralization

, , &

References

  • Ameen, F., K. S. Al-Maary, A. Almansob, and S. AlNadhari. 2023. Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Applied Nanoscience 13 (3):2233–40. doi:10.1007/s13204-021-02047-4.
  • AshaRani, P., G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3 (2):279–90. doi:10.1021/nn800596w.
  • Blake, A., B. A. Wan, L. Malek, C. DeAngelis, P. Diaz, N. Lao, E. Chow, and S. O’Hearn. 2018. A selective review of medical cannabis in cancer pain management. Annals of Palliative Medicine 6 (Suppl 2):S215–S222. doi:10.21037/apm.2017.08.05.
  • Chaudhari, V. P., S. M. Roy, T. K. Chaudhuri, and D. R. Roy. 2022. Synthesis, characterization and significant antimicrobial properties of CZTS nanoparticles against pathogenic strains. Journal of the Indian Chemical Society 99 (3):100351. doi:10.1016/j.jics.2022.100351.
  • Chhikara, B. S., and K. Parang. 2023. Global Cancer Statistics 2022: The trends projection analysis. Chemical Biology Letters 10 (1):451.
  • Chiu, H. I., C. N. A. Che Mood, N. N. Mohamad Zain, M. R. Ramachandran, N. Yahaya, N. N. S. Nik Mohamed Kamal, W. H. Tung, Y. K. Yong, C. K. Lee, and V. Lim. 2021. Biogenic silver nanoparticles of Clinacanthus nutans as antioxidant with antimicrobial and cytotoxic effects. Bioinorganic Chemistry and Applications 2021:9920890–11. doi:10.1155/2021/9920890.
  • Chong, H. W., K. Rezaei, B. L. Chew, and V. Lim. 2018. Chemometric profiling of Clinacanthus nutans leaves possessing antioxidant activities using ultraviolet-visible spectrophotometry. Chiang Mai Journal of Science 45 (3):1519–30.
  • Colak, S. G., C. V. Sezer, R. E. Demirdogen, M. Ince, F. M. Emen, K. Ocakoglu, and H. M. Kutlu. 2021. Investigation of in vitro activities of Cu2ZnSnS4 nanoparticles in human non-small cell lung cancer. Materials Today Communications 27:102304. doi:10.1016/j.mtcomm.2021.102304.
  • da Silva, B. L., B. L. Caetano, B. G. Chiari-Andréo, R. C. L. R. Pietro, and L. A. Chiavacci. 2019. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces. B, Biointerfaces 177:440–7. doi:10.1016/j.colsurfb.2019.02.013.
  • Han, Z., M. Gao, Z. Wang, L. Peng, Y. Zhao, and L. Sun. 2022. pH/NIR-responsive nanocarriers based on mesoporous polydopamine encapsulated gold nanorods for drug delivery and thermo-chemotherapy. Journal of Drug Delivery Science and Technology 75:103610. doi:10.1016/j.jddst.2022.103610.
  • He, Y., Z. Du, S. Ma, Y. Liu, D. Li, H. Huang, S. Jiang, S. Cheng, W. Wu, K. Zhang, et al. 2016. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. International Journal of Nanomedicine 11:1879–87. doi:10.2147/IJN.S103695.
  • Huang, J., Y. Li, A. Orza, Q. Lu, P. Guo, L. Wang, L. Yang, and H. Mao. 2016. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image‐guided approaches. Advanced Functional Materials 26 (22):3818–36. doi:10.1002/adfm.201504185.
  • Imla Mary, C., M. Senthilkumar, and S. Moorthy Babu. 2018. Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs). Journal of Materials Science: Materials in Electronics 29 (12):9751–6. doi:10.1007/s10854-018-9013-4.
  • Jain, S., P. Chawla, S. N. Sharma, D. Singh, and N. Vijayan. 2018. Efficient colloidal route to pure phase kesterite Cu2ZnSnS4 (CZTS) nanocrystals with controlled shape and structure. Superlattices and Microstructures 119:59–71. doi:10.1016/j.spmi.2018.04.003.
  • Juan, C. A., J. M. Pérez de la Lastra, F. J. Plou, and E. Pérez-Lebeña. 2021. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 22 (9):4642. doi:10.3390/ijms22094642.
  • Kajani, A. A., S. H. Zarkesh-Esfahani, A.-K. Bordbar, A. R. Khosropour, A. Razmjou, and M. Kardi. 2016. Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. Journal of Molecular Liquids 223:549–56. doi:10.1016/j.molliq.2016.08.064.
  • Li, Z., A. L. K. Lui, K. H. Lam, L. Xi, and Y. M. Lam. 2014. Phase-selective synthesis of Cu2ZnSnS4 nanocrystals using different sulfur precursors. Inorganic Chemistry 53 (20):10874–80. doi:10.1021/ic500956n.
  • Maeda, H., and M. Khatami. 2018. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clinical and Translational Medicine 7:1–20. doi:10.1186/s40169-018-0185-6.
  • Mohammed, S. A., K. S. Khashan, M. S. Jabir, F. A. Abdulameer, G. M. Sulaiman, M. S. Al-Omar, H. A. Mohammed, A. A. Hadi, and R. A. Khan. 2022. Copper oxide nanoparticle-decorated carbon nanoparticle composite colloidal preparation through laser ablation for antimicrobial and antiproliferative actions against breast cancer cell line, MCF-7. BioMed Research International 2022:9863616–3. doi:10.1155/2022/9863616.
  • Nadhe, S. B., S. A. Wadhwani, R. Singh, and B. A. Chopade. 2020. Green synthesis of AuNPs by Acinetobacter sp. GWRVA25: Optimization, characterization, and its antioxidant activity. Frontiers in Chemistry 8:474. doi:10.3389/fchem.2020.00474.
  • Nel, A. E., L. Mädler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials 8 (7):543–57. doi:10.1038/nmat2442.
  • Özel, F., A. Sarılmaz, B. İstanbullu, A. Aljabour, M. Kuş, and S. Sönmezoğlu. 2016. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells. Scientific Reports 6 (1):29207. doi:10.1038/srep29207.
  • Prabaharan, M. 2015. Chitosan-based nanoparticles for tumor-targeted drug delivery. International Journal of Biological Macromolecules 72:1313–22. doi:10.1016/j.ijbiomac.2014.10.052.
  • Ravichandran, K., N. Chidhambaram, and S. Gobalakrishnan. 2016. Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. Journal of Physics and Chemistry of Solids 93:82–90. doi:10.1016/j.jpcs.2016.02.013.
  • Saratale, R. G., G. D. Saratale, H. S. Shin, J. M. Jacob, A. Pugazhendhi, M. Bhaisare, and G. Kumar. 2018. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: Current knowledge, their agricultural and environmental applications. Environmental Science and Pollution Research International 25 (11):10164–83. doi:10.1007/s11356-017-9912-6.
  • Sarilmaz, A., and F. Ozel. 2019. Synthesis of band-gap tunable earth-abundant CXTS (X = Mn+ 2, Co+ 2, Ni+ 2 and Zn+ 2) nanorods: Toward a generalized synthesis strategy of quaternary chalcogenides. Journal of Alloys and Compounds 780:518–22. doi:10.1016/j.jallcom.2018.11.370.
  • Geor Malar, C., M. Seenuvasan, K. S. Kumar, A. Kumar, and R. Parthiban. 2020. Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochemical Engineering Journal 158:107574. doi:10.1016/j.bej.2020.107574.
  • Senapati, S., A. K. Mahanta, S. Kumar, and P. Maiti. 2018. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy 3 (1):7. doi:10.1038/s41392-017-0004-3.
  • Sibuyi, N. R. S., K. L. Moabelo, M. Meyer, M. O. Onani, A. Dube, and A. M. Madiehe. 2019. Nanotechnology advances towards development of targeted-treatment for obesity. Journal of Nanobiotechnology 17 (1):122. doi:10.1186/s12951-019-0554-3.
  • Singh, A., H. Geaney, F. Laffir, and K. M. Ryan. 2012. Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. Journal of the American Chemical Society 134 (6):2910–3. doi:10.1021/ja2112146.
  • Tan, L., J. Wan, W. Guo, C. Ou, T. Liu, C. Fu, Q. Zhang, X. Ren, X.-J. Liang, J. Ren, et al. 2018. Renal-clearable quaternary chalcogenide nanocrystal for photoacoustic/magnetic resonance imaging guided tumor photothermal therapy. Biomaterials 159:108–18. doi:10.1016/j.biomaterials.2018.01.003.
  • Verma, A., O. Uzun, Y. Hu, Y. Hu, H.-S. Han, N. Watson, S. Chen, D. J. Irvine, and F. Stellacci. 2008. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Materials 7 (7):588–95. doi:10.1038/nmat2202.
  • Zhang, X., N. Bao, B. Lin, and A. Gupta. 2013. Colloidal synthesis of wurtzite Cu2CoSnS4 nanocrystals and the photoresponse of spray-deposited thin films. Nanotechnology, 24 (10):105706. doi:10.1088/0957-4484/24/10/105706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.