89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Numerical study on transport and deposition characteristics of particles associated with heat setting process in opposed jet flow field

, &

References

  • Brach, R. M., and P. F. Dunn. 1992. A mathematical model of the impact and adhesion of microsphers. Aerosol Science & Technology 16 (1):51–64. doi: 10.1080/02786829208959537.
  • Casarsa, L. 2003. Aerodynamic performance investigation of a fixed rib-roughened internal cooling passage. Ph.D. thesis. Belgium: Von Karman Institute for Fluid Dynamics.
  • Cay, A., I. Tarakçıoğlu, and A. Hepbasli. 2010. Exergetic analysis of textile convective drying with stenters by subsystem models: Part 2—Parametric study on exergy analysis. Drying Technology 28 (12):1368–76. doi: 10.1080/07373937.2010.482696.
  • Chiou, M. C., C. H. Chiu, W. Z. Hsu, and J. S. Li. 2016. Combined effect of thermophoretic and Coulombic forces on particle deposition in a turbulent flow. International Journal of Thermal Sciences 109 (2):424–42. doi: 10.1016/j.ijthermalsci.2016.06.009.
  • Datta, A. K. 2007. Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. Journal of Food Engineering 80 (1):96–110. doi: 10.1016/j.jfoodeng.2006.05.012.
  • Duan, M., Y. Wang, D. Wang, G. Da, L. Liu, and Y. Yang. 2019. Modeling dynamic variation of drag force acting on single hot particle. Powder Technology 344 (15):432–42. doi: 10.1016/j.powtec.2018.12.034.
  • Gao, N., J. Niu, Q. He, T. Zhu, and J. Wu. 2012. Using RANS turbulence models and Lagrangian approach to predict particle deposition in turbulent channel flows. Building & Environment 48 (2):206–14. doi: 10.1016/j.buildenv.2011.09.003.
  • Hai, J., L. Lin, and S. Ke. 2010. Simulation of particle deposition in ventilation duct with a particle–wall impact model. Building & Environment 45 (5):1184–91.
  • Han, Z., Z. Xu, X. Yu, A. Sun, and Y. Li. 2019. Numerical simulation of ash particles deposition in rectangular heat exchange channel. International Journal of Heat and Mass Transfer 136 (6):767–76. doi: 10.1016/j.ijheatmasstransfer.2019.01.114.
  • Hao, L., and C. Wz. 2018. Numerical study of particle deposition in turbulent duct flow with a forward- or backward-facing step. Fuel 234 (2):189–98.
  • Hong, W., B. Wang, and J. Zheng. 2020. Numerical study on the influence of fine particle deposition characteristics on wall roughness. Powder Technology 360 (5):120–8. doi: 10.1016/j.powtec.2019.09.079.
  • Iacono, G. L., P. G. Tucker, and A. M. Reynolds. 2005. Predictions for particle deposition from LES of ribbed channel flow. International Journal of Heat & Fluid Flow 26 (4):558–68. doi: 10.1016/j.ijheatfluidflow.2005.03.004.
  • Jaćimovski, D., K. Šućurović, M. Đuriš, Z. Arsenijević, and N. Bošković-Vragolović. 2023. Movement and velocity of a particle in an inverse fluidized bed. Particulate Science and Technology 41 (4):484–95. doi: 10.1080/02726351.2022.2119625.
  • Ke, Z., X. Yang, and Y. Kang. 2010. Effects of ventilation strategies and source locations on indoor particle deposition. Building & Environment 45 (3):655–62. doi: 10.1016/j.buildenv.2009.08.003.
  • Liu, H., and Z. Li. 2011. Prediction of particle deposition characteristic in 90° square bend: Square bend particle deposition characteristic. Applied Thermal Engineering 31 (16):3402–9. doi: 10.1016/j.applthermaleng.2011.06.025.
  • Lu, H., and L. Lu. 2015. Effects of rib spacing and height on particle deposition in ribbed duct air flows. Building and Environment 92 (2):317–27. doi: 10.1016/j.buildenv.2015.04.035.
  • Lu, H., T. Ma, and L. Lu. 2020. Deposition characteristics of particles in inclined heat exchange channel with surface ribs. International Journal of Heat and Mass Transfer 161 (1):120289. doi: 10.1016/j.ijheatmasstransfer.2020.120289.
  • Mei, X., G. Gong, P. Peng, and H. Su. 2019. Predicting thermophoresis induced particle deposition by using a modified Markov chain model. International Journal of Thermal Sciences 136 (2):44–51. doi: 10.1016/j.ijthermalsci.2018.10.013.
  • Parker, S., T. Foat, and S. Preston. 2008. Towards quantitative prediction of aerosol deposition from turbulent flows. Journal of Aerosol Science 39 (2):99–112. doi: 10.1016/j.jaerosci.2007.10.002.
  • Prakotmak, P., and S. Wangchai. 2022. CFD-DEM simulation of fluidization of multi sphere-modeled corn particles. Particulate Science and Technology 40 (6):752–61. doi: 10.1080/02726351.2021.2001781.
  • Salmanzadeh, M., G. Ahmadi, and M. Rahnama. 2012. Transport and deposition of evaporating droplets in a ventilated environment. Particulate Science and Technology 30 (1):17–31. doi: 10.1080/02726351.2010.544015.
  • Shang, S., Z. Yu, G. Sun, C. Yu, R. H. Gong, G. Wang, and X. Wang. 2022. Modeling the airflow field of vortex spinning. Textile Research Journal 92 (9–10):1466–83. doi: 10.1177/00405175211056980.
  • Shukla, S. R. 2007. 6 - Pollution abatement and waste minimisation in textile dyeing. Environmental Aspects of Textile Dyeing 116–48. Woodhead Publishing. doi: 10.1533/9781845693091.116.
  • Sun, K., and L. Lu. 2013. Particle flow behavior of distribution and deposition throughout 90° bends: Analysis of influencing factors. Journal of Aerosol Science 65 (3):26–41. doi: 10.1016/j.jaerosci.2013.07.002.
  • Sun, K., L. Lu, and H. Jiang. 2012. A numerical study of bend-induced particle deposition in and behind duct bends. Building and Environment 52 (2):77–87. doi: 10.1016/j.buildenv.2011.12.009.
  • Vakilzadeh, A., A. Bagheri Sarvestani, R. Osloob, and R. Kamali. 2023. Sensitivity analysis of kinetic theory of granular flow (KTGF) and mixture models in terms of involved elemental parameters for two-phase gas-solid flow. Particulate Science and Technology 41 (8):1156–69. doi: 10.1080/02726351.2023.2186990.
  • Wang, J., Z. Zhao, L. Tian, X. Ren, and B. Sundén. 2021. Effects of hole configuration on film cooling effectiveness and particle deposition on curved surfaces in gas turbines. Applied Thermal Engineering 190 (1):116861. doi: 10.1016/j.applthermaleng.2021.116861.
  • Xu, Z., A. Sun, Z. Han, X. Yu, and Y. Zhang. 2019. Improvement of particle deposition model using random function method. Building and Environment 158 (7):192–204. doi: 10.1016/j.buildenv.2019.05.021.
  • Yi, L., Q. Zhu, and K. W. Yeung. 2002. Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textiles. Textile Research Journal, 72 (5):435–446 doi: 10.1177/004051750207200511.
  • Zhang, Z., and Q. Chen. 2007. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric Environment 41 (25):5236–48. doi: 10.1016/j.atmosenv.2006.05.086.
  • Zhao, B., and J. Wu. 2006. Modeling particle deposition onto rough walls in ventilation duct. Atmospheric Environment 40 (36):6918–27. doi: 10.1016/j.atmosenv.2006.06.015.
  • Zhuang, J., Y. Diao, and H. Shen. 2021. Numerical investigation on transport characteristics of high-temperature fine particles generated in a transiently welding process. International Journal of Heat and Mass Transfer 176 (5):121471. doi: 10.1016/j.ijheatmasstransfer.2021.121471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.