123
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Role of arbuscular mycorrhizal fungi on the performance of floodplain Phragmites japonica under nutrient stress condition

, , &
Pages 402-415 | Received 07 Aug 2014, Accepted 25 Mar 2015, Published online: 22 Jun 2015

References

  • Smith SE, Read DJ. Mycorrhizal symbiosis. New Work: Academic Press; 2008.
  • Piotrowski JS, Lekberg Y, Harner MJ, Ramsey PW, Rillig MC. Dynamics of mycorrhizae during development of riparian forests along an unregulated river. Ecography. 2008;31:245–253. doi: 10.1111/j.0906-7590.2008.5262.x
  • Corkidi L, Rincón E. Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. Mycorrhiza. 1997;7:17–23. doi: 10.1007/s005720050158
  • Miller S, Sharitz R. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Funct Ecol. 2000;14:738–748. doi: 10.1046/j.1365-2435.2000.00481.x
  • Asaeda T, Baniya MB, Rashid MH. Effect of floods on the growth of Phragmites japonica on the sediment bar of regulated rivers: a modelling approach. Int J Riv Basin Manage. 2011;9:211–220. doi: 10.1080/15715124.2011.613837
  • Ortas I. The effect of mycorrhizal inoculation on forage and non-forage plant growth and nutrient uptake under field conditions. Options Méditerranéennes Série A: Séminaires Méditerranéens (CIHEAM). 2008;79:463–469.
  • Ortas I. Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia. J Plant Nutr. 2003;26:1–17. doi: 10.1081/PLN-120016494
  • Giller PS, Malmqvist B. The biology of streams and rivers. Oxford: Oxford University Press; 1998.
  • Pinay G, Fabre A, Vervier P, Gazelle F. Control of C, N, P distribution in soils of riparian forests. Landscape Ecol. 1992;6:121–132. doi: 10.1007/BF00130025
  • Bedford BL, Walbridge MR, Aldous A. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology. 1999;80:2151–2169. doi: 10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2
  • Asaeda T, Rashid MH. The impacts of sediment released from dams on downstream sediment bar vegetation. J Hydrol. 2012;430–431:25–38. doi: 10.1016/j.jhydrol.2012.01.040
  • Asaeda T, Siong K, Kawashima T, Sakamoto K. Growth of Phragmites japonica on a sandbar of regulated river: morphological adaptation of the plant to low water and nutrient availability in the substrate. River Res Appl. 2009;25:874–891. doi: 10.1002/rra.1191
  • Harner MJ, Opitz N, Geluso K, Tockner K, Rillig MC. Arbuscular mycorrhizal fungi on developing islands within a dynamic river floodplain: an investigation across successional gradients and soil depth. Aquatic Sci. 2011;73:35–42. doi: 10.1007/s00027-010-0157-4
  • Azami K, Suzuki H, Toki S. Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase Dam, Japan. River Res Appl. 2004;20:549–563. doi: 10.1002/rra.763
  • Asaeda T, Gomes PI, Takeda E. Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event. River Res Appl. 2010;26:960–976. doi: 10.1002/rra.1322
  • Sekine H, Sakamoto K, Nishimura T, Asaeda T. Development of a simulation model considering vegetation growth and flushing in Arakawa River. KSCE J Civil Eng. 2012;16:239–246. doi: 10.1007/s12205-012-0007-0
  • Kang S, Kang H, Ko D, Lee D. Nitrogen removal from a riverine wetland: a field survey and simulation study of Phragmites japonica. Ecol Eng. 2002;18:467–475. doi: 10.1016/S0925-8574(01)00107-0
  • Black CA. Methods of soil analysis: Part I physical and mineralogical properties. Madison, WI: American Society of Agronomy; 1965.
  • Murphy J, Riley J. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36. doi: 10.1016/S0003-2670(00)88444-5
  • Bray RH, Kurtz L. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945;59:39–46. doi: 10.1097/00010694-194501000-00006
  • Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. T Brit Mycol Soc. 1963;46:235–244. doi: 10.1016/S0007-1536(63)80079-0
  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut. 2006;139:362–371. doi: 10.1016/j.envpol.2005.05.005
  • Higo M, Isobe K, Kang D-J, Ujiie K, Drijber RA, Ishii R. Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod Sci. 2010;13:74–79. doi: 10.1626/pps.13.74
  • Kaneko M, Tanimoto E. Auxin-regulation of hyphal elongation and spore germination in arbuscular mycorrhizal fungus, Gigaspora margarita. International Symposium “Root Research and Applications” RootRAP; 2009 September 2–4; Vienna, Austria: Boku.
  • Kowalchuk GA, De Souza FA, Van Veen JA. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol. 2002;11:571–581. doi: 10.1046/j.0962-1083.2001.01457.x
  • Koske R, Gemma J. Mycorrhizae and succession in plantings of beachgrass in sand dunes. Am J Bot. 1997;84:118–130. doi: 10.2307/2445889
  • Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0
  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x
  • Koske R, Gemma J. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res. 1989;92:486–488. doi: 10.1016/S0953-7562(89)80195-9
  • Tandon H. Methods of analysis of soils, plants, waters, and fertilizer. New Delhi: Fertilizer Development and Consulation Organization; 1993.
  • Gilcreas F. Standard methods for the examination of water and waste water. Am J Public Health N. 1966;56:387–388. doi: 10.2105/AJPH.56.3.387
  • Conversa G, Lazzizera C, Bonasia A, Elia A. Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biol Fertil Soils. 2013;49:691–703. doi: 10.1007/s00374-012-0757-3
  • Ortas I. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 2012;125:35–48. doi: 10.1016/j.fcr.2011.08.005
  • Sarkar A, Asaeda T, Wang Q, Rashid MH. Arbuscular mycorrhizal influences on growth, nutrient uptake, and use efficiency of Miscanthus sacchariflorus growing on nutrient-deficient river bank soil. Flora. 2015;212:46–54.
  • R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2010 [cited 2011 Jul 01]. Available from: http://www.R-project.org
  • Pinior A, Grunewaldt-Stöcker G, von Alten H, Strasser RJ. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza. 2005;15:596–605. doi: 10.1007/s00572-005-0001-1
  • Zuccarini P. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ. 2007;53:283–289.
  • Fujiyoshi M, Kagawa A, Nakatsubo T, Masuzawa T. Effects of arbuscular mycorrhizal fungi and soil developmental stages on herbaceous plants growing in the early stage of primary succession on Mount Fuji. Ecol Res. 2006;21:278–284. doi: 10.1007/s11284-005-0117-y
  • Neagoe A, Iordache V, Bergmann H, Kothe E. Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J Plant Nutr Soil Sci. 2013;176:273–286. doi: 10.1002/jpln.201200079
  • Treseder KK. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil. 2013;371:1–13. doi: 10.1007/s11104-013-1681-5
  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. 2005;435:819–823. doi: 10.1038/nature03610
  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol lett. 2010;13:394–407. doi: 10.1111/j.1461-0248.2009.01430.x
  • Sarkar A, Asaeda T, Wang Q, Rashid MH. Arbuscular mycorrhizal association for growth and nutrients assimilation of Pharagmites japonica and Polygonum cuspidatum plants growing on river bank soil. Commun Soil Sci Plant Anal; Forthcoming.
  • Sarkar A, Islam T, Biswas GC, Alam S, Hossain M, Talukder NM. Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. Acta Microbiol Immunol Hung. 2012;59:199–213. doi: 10.1556/AMicr.59.2012.2.5
  • Brundrett M. Diversity and classification of mycorrhizal associations. Biol Rev. 2004;79:473–495. doi: 10.1017/S1464793103006316
  • Smith FA, Smith SE. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil. 2011;348:63–79. doi: 10.1007/s11104-011-0865-0
  • Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol. 2011;62:227–250. doi: 10.1146/annurev-arplant-042110-103846
  • Smith SE, Smith FA. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 2012;104:1–13. doi: 10.3852/11-229
  • Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ. 2005;28:1247–1254. doi: 10.1111/j.1365-3040.2005.01360.x
  • Hodge A, Helgason T, Fitter A. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 2010;3:267–273. doi: 10.1016/j.funeco.2010.02.002
  • Atul-Nayyar A, Hamel C, Hanson K, Germida J. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza. 2009;19:239–246. doi: 10.1007/s00572-008-0215-0
  • Leigh J, Hodge A, Fitter AH. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 2009;181:199–207. doi: 10.1111/j.1469-8137.2008.02630.x
  • Barrett G, Campbell C, Fitter A, Hodge A. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl Soil Ecol. 2011;48:102–105. doi: 10.1016/j.apsoil.2011.02.002
  • Asghari HR, Cavagnaro TR. Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct Plant Biol. 2011;38:219–226. doi: 10.1071/FP10180
  • Van der Heijden MG. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology. 2010;91:1163–1171. doi: 10.1890/09-0336.1
  • Rillig MC, Hoye AT, Carran A. Minimal direct contribution of arbuscular mycorrhizal fungi to DOC leaching in grassland through losses of glomalin-related soil protein. Soil Biol Biochem. 2006;38:2967–2970. doi: 10.1016/j.soilbio.2006.03.022
  • Malvi UR. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka J Agr Sci. 2011;24:106–109.
  • Asaeda T, Senavirathna MDHJ, Kaneko Y, Rashid MH. Effect of calcium and magnesium on the growth and calcite encrustation of Chara fibrosa. Aquat Bot. 2014;113:100–106. doi: 10.1016/j.aquabot.2013.11.002
  • Liao J, Lin X, Cao Z, Shi Y, Wong M. Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere. 2003;50:847–853. doi: 10.1016/S0045-6535(02)00229-1
  • George E, Romheld V, Marschner H. Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey JA, Crowley DE, Luster DG, editors. Biochemistry of metal micronutrients in the rhizosphere. Boca Raton: CRC Press; 1994. p. 93–109.
  • El-Kherbawy M, Angle J, Heggo A, Chaney R. Soil pH, rhizobia, and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol Fertil Soils. 1989;8:61–65. doi: 10.1007/BF00260517
  • Sainz M, Arines J. Effect of indigenous and introduced vesicular-arbuscular mycorrhizal fungi on growth and phosphorus uptake of Trifolium pratense and on inorganic phosphorus fractions in a cambisol. Biol Fertil Soils. 1988;6:55–60. doi: 10.1007/BF00257921

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.