139
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Seasonal and spatial variations of acid-volatile sulphide and simultaneously extracted metals in the Yangtze River Estuary

, , , , &
Pages 466-477 | Received 19 Nov 2014, Accepted 08 Jun 2015, Published online: 24 Jul 2015

References

  • Fdez-Ortiz de Vallejuelo S, Arana G, de Diego A, et al. Pattern recognition and classification of sediments according to their metal content using chemometric tools. A case study: the estuary of Nerbioi-Ibaizabal River (Bilbao, Basque Country). Chemosphere. 2012;85:1347–1352. doi: 10.1016/j.chemosphere.2011.07.054
  • Holder JV. Handbook of green chemistry and technology. Oxford: Blackwell Science Ltd. Chapter 3, Chemistry and the environment; 2002. p. 28–55.
  • Wang Z, Liu C. Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China. Chem Geol. 2003;202:383–396. doi: 10.1016/j.chemgeo.2002.05.001
  • Zhao S, Feng C, Wang D, et al. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere. 2013;91:977–984. doi: 10.1016/j.chemosphere.2013.02.001
  • SEPA. Marine sediment quality (GB 18668–2002). Beijing: Standards Press of China; 2002.
  • Kersten M, Kroncke I. Bioavailability of lead in North Sea sediments. Helgolander Meeresun. 1991;45:403–409. doi: 10.1007/BF02367175
  • Eggleton J, Thomas KV. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int. 2004;30:973–980. doi: 10.1016/j.envint.2004.03.001
  • Kelderman P, Osman AA. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Res. 2007;41:4251–4261. doi: 10.1016/j.watres.2007.05.058
  • De Jonge M, Teuchies J, Meire P, et al. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res. 2012;46:2205–2214. doi: 10.1016/j.watres.2012.01.052
  • Luoma SN, Rainbow PS. Metal contamination in aquatic environments: science and lateral management. New York: Cambridge University Press; 2008.
  • Yu K, Tsai L, Chen S, et al. Chemical binding of heavy metals in anoxic river sediments. Water Res. 2001;35:4086–4094. doi: 10.1016/S0043-1354(01)00126-9
  • Moalla SMN, Soltan ME, Rashed MN, et al. Evaluation of dilute hydrochloric acid and acid ammonium oxalate as extractants for some heavy metals from Nile River sediments. Chem Ecol. 2006;22:313–327. doi: 10.1080/02757540600812289
  • Ankley GT, Toro DMD, Hansen DJ, et al. Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem. 1996;15:2056–2066. doi: 10.1002/etc.5620151202
  • Morse JW, Millero FJ, Cornwell JC, et al. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci Rev. 1987;24:1–42. doi: 10.1016/0012-8252(87)90046-8
  • USEPA. The incidence and severity of sediment contamination in surface waters of the United States, national sediment quality survey. Washington, DC: United States Environmental Protection Agency, Office of Research and Development; 2004.
  • Peng SH, Wang WX, Li X, et al. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere. 2004;57:839–851. doi: 10.1016/j.chemosphere.2004.07.015
  • Younis AM, El-Zokm GM, Okbah MA. Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments. Environ Monit Assess. 2014;186:3567–3579. doi: 10.1007/s10661-014-3639-3
  • Batley GE, Maher WA. The development and application of anzecc and armcanz sediment quality guidelines. Australas J Ecotox. 2001;7:81–92.
  • Toro DMD, Mahony JD, Hansen DJ, et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem. 1990;9:1487–1502. doi: 10.1002/etc.5620091208
  • Mucha AP, Vasconcelos MT, Bordalo AA. Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal). Mar Environ Res. 2005;60:531–550. doi: 10.1016/j.marenvres.2004.12.004
  • Prica M, Dalmacija B, Roncevic S, et al. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Sci Environ. 2008;389:235–244.
  • van Griethuysen C, de Lange HJ, van den Heuij M, et al. Temporal dynamics of AVS and SEM in sediment of shallow freshwater floodplain lakes. Appl Geochem. 2006;21:632–642. doi: 10.1016/j.apgeochem.2005.12.010
  • Hori K, Saito Y, Zhao Q, et al. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Mar Geol. 2001;177:331–351. doi: 10.1016/S0025-3227(01)00165-7
  • Wang B, Wei Q, Chen J, et al. Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary. Mar Environ Res. 2012;77:1–5. doi: 10.1016/j.marenvres.2011.12.007
  • Chen J. Yangtze River Estuary in the 21st century. Beijing: China Ocean Press; 2009. p. 128–148.
  • Li D, Zhang J, Huang D, et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Sci China. 2002;45:1137–1146. doi: 10.1360/02yd9110
  • Tian RC, Hu FX, Saliot A. Biogeochemical processes controlling nutrients at the turbidity maximum and the plume water fronts in the Changjiang Estuary. Biogeochemistry. 1993;19:82–102. doi: 10.1007/BF00000797
  • Fang T, Li DJ, Tang JL, et al. Evaluation on distribution of heavy metal elements in sediments and bed material environment in Yangtze River Estuary and its adjacent sea. Yangtze River. 2012;43:68–81. China.
  • He SQ, Song JM, Li XG, et al. Distribution, source of heavy metals in the surface sediments and sediment quality of the Changjiang Estuarine and its adjacent regions. Mar Sci. 2011;35:4–9. China.
  • Li L, Ping XW, Wang YL, et al. Study of heavy metals in sediments of the Yangtze River Estuary and adjacent sea. China Environ Sci China. 2012;32:2245–2252.
  • Sun W. Biologieal availability and resuspension of heavy metals in coastal sediments from south Yangtze River Estuary. Shanghai: East China Normal University; 2009.
  • Fang T, Li X, Zhang G. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotox Environ Safe. 2005;61:420–431. doi: 10.1016/j.ecoenv.2004.10.004
  • Wu QQ, Ma QM, Wang JG, et al. The AVS in surface sediment of near sea area of Huanghe Estuary. Mar Environ Sci China. 2007;26:126–129.
  • Yang YQ, Zhang L, Chen FR, et al. Seasonal variation of acid volatile sulfide and simultaneously extracted metals in sediment cores from the Pearl River Estuary. Soil Sediment Contam. 2014;23:480–496. doi: 10.1080/15320383.2014.838207
  • Fang T, Zhang XH, Xu XQ. Seasonal and vertical distribution of acid volatile sulphide (AVS) in lake Donghu sediment. Acta Hydrobiol Sin. 2002;26:239–245.
  • Griethuysen Cv, Gillissen F, Koelmans AA. Measuring acid volatile sulphide in floodplain lake sediments: effect of reaction time, sample size and aeration. Chemosphere. 2002;47:395–400. doi: 10.1016/S0045-6535(01)00314-9
  • Hsieh YP, Yang CH. Diffusion methods for the determination of reduced inorganic sulfur species in sediments. Limnol Oceanogr. 1989;34:1126–1130. doi: 10.4319/lo.1989.34.6.1126
  • Fogo JK, Popowsky M. Spectrophotometric determination of hydrogen sulfide. Anal Chem. 1949;21:732–734. doi: 10.1021/ac60030a028
  • Durán I, Sánchez-Marín P, Beiras R. Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments. Mar Environ Res. 2012;77:43–49. doi: 10.1016/j.marenvres.2012.02.001
  • Guo F. Distribution of heavy metals and biogenic elements in the sediments and their ecological risk assessment in the East China Sea and Yellow Sea. Jinan: Jinan University; 2011.
  • Toro DMD, McGrath JA, Hansen DJ, et al. Predicting sediment metal toxicity using a sediment biotic ligand model: methodology and initial application. Environ Toxicol Chem. 2005;24:2410–2427. doi: 10.1897/04-413R.1
  • Nasr SM, Khairy MA, Okbah MA, et al. AVS-SEM relationships and potential bioavailability of trace metals in sediments from the Southeastern Mediterranean sea, Egypt. Chem Ecol. 2014;30:15–28. doi: 10.1080/02757540.2013.831080
  • USEPA. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Washington, DC: United States Environmental Protection Agency, Office of Research and Development; 2005.
  • Leonard EN, Mattson VR, Benoit DA, et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes. Hydrobiologia. 1993;271:87–95. doi: 10.1007/BF00007545
  • Yin H, Fan C. Dynamics of reactive sulfide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China. Arch Environ Con Tox. 2011;60:565–575. doi: 10.1007/s00244-010-9575-5
  • Herlihy AT, Mills AL. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl Environ Microb. 1985;49:179–186.
  • Jorgensen BB. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limno Oceanogr. 1977;22:814–832. doi: 10.4319/lo.1977.22.5.0814
  • Nedwell DB, Abram JW. Bacterial sulphate reduction in relation to sulphur geochemistry in two contrasting areas of saltmarsh sediment. Estuar Coast Mar S. 1978;6:341–351. doi: 10.1016/0302-3524(78)90126-3
  • Gao X, Li P, Chen CT. Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results. Mar Pollut Bull. 2013;72:281–288. doi: 10.1016/j.marpolbul.2013.02.007
  • Hansen DJ, Berry WJ, Mahony JD, et al. Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations. Environ Toxicol Chem. 1996;15:2080–2094. doi: 10.1002/etc.5620151204
  • Qin Y, Zhao Y. Geology of Yellow Sea. Beijing: China Ocean Press; 1989.
  • Wijsman JWM, Middelburg JJ, Herman PMJ, et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Mar Chem. 2001;74:261–278. doi: 10.1016/S0304-4203(01)00019-6
  • Froehner S, Zeni J, Luz ECd, et al. Characterization of granulometric and chemical composition of sediments of Barigui River samples and their capacity to retain polycyclic aromatic hydrocarbons. Water Air Soil Poll. 2009;203:381–389. doi: 10.1007/s11270-009-0020-1
  • Guo W, He M, Yang Z, et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China. J Hazard Mater. 2009;164:1379–1385. doi: 10.1016/j.jhazmat.2008.09.083
  • Wang J, Liu R, Zhang P, et al. Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary. Mar Pollut Bull. 2014;87:364–373. doi: 10.1016/j.marpolbul.2014.07.048
  • Campana O, Rodrı´guez A, Blasco J. Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation. Arch Environ Con Tox. 2009;56:416–425. doi: 10.1007/s00244-008-9206-6
  • Mai BX, Chen SJ, Luo XJ, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environ Sci Technol. 2005;39:3521–3527. doi: 10.1021/es048083x
  • Zhu M-X, Hao X-C, Shi X-N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf. Appl Geochem. 2012;27:892–905. doi: 10.1016/j.apgeochem.2012.01.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.