196
Views
14
CrossRef citations to date
0
Altmetric
Articles

Role of Acinetobacter sp. in arsenite As(III) oxidation and reducing its mobility in soil

&
Pages 460-471 | Received 12 Oct 2015, Accepted 16 Feb 2016, Published online: 21 Mar 2016

References

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B. Arsenic contamination and its risk management in complex environmental settings. Adv Agron. 2005;86:2–64.
  • Nordstrom DK. Public health. Worldwide occurrences of arsenic in ground water. Science. 2002;296:2143–2145. doi: 10.1126/science.1072375
  • Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y. Arsenic, fluoride and iodine in groundwater of China. J Geochem Explor. 2013;135:1–21. doi: 10.1016/j.gexplo.2013.10.012
  • Hartwig A, Groblinghoff UD, Beyersmann D, Nataranjan AT, Filon R, Mullenders LHF. Interaction of arsenic(III) with nucleotide excision repair in UV-irradiated human fibroblasts. Carcinogenesis. 1997;18:399–405. doi: 10.1093/carcin/18.2.399
  • Lynn S, Lai HT, Gurr JR, Jan KY. Arsenite retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis. 1997;12:353–358. doi: 10.1093/mutage/12.5.353
  • Hughes MF. Arsenic toxicity and its potential mechanisms of action. Toxicol Lett. 2002;133:1–16. doi: 10.1016/S0378-4274(02)00084-X
  • Rhine ED, Phelps CD, Young LY. Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol. 2006;8:899–908. doi: 10.1111/j.1462-2920.2005.00977.x
  • Salmassi TM, Venkateswaren K, Satomi M, Newman DK, Hering JG. Oxidation of arsenite by Agrobacterium albertimagni AOL15, sp. nov., isolated from hot creek, California. Geomicrobiol J. 2002;19:53–66. doi: 10.1080/014904502317246165
  • USEPA. National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring; final rule. Federal Register. 2001;66:6976–7066.
  • Glaubig RA, Goldberg S. Determination of inorganic arsenic (III) and arsenic (III plus V) using automated hydride-generation atomic absorption spectrometry. Soil Sci Soc Am J. 1988;52:536–537. doi: 10.2136/sssaj1988.03615995005200020044x
  • Voth-Beach LM, Shrader DE. Reduction of interferences in the determination of arsenic and selenium by hydride generation. Spectroscopy. 1985;1:60–65.
  • Anderson GL, Williams J, Hille R. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum containing hydroxylase. J Biol Chem. 1992;267:23674–23682.
  • Karn SK, Chakrabarti SK, Reddy MS. Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation. 2011;22:63–69. doi: 10.1007/s10532-010-9376-6
  • Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599. doi: 10.1093/molbev/msm092
  • Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51:844–851. doi: 10.1021/ac50043a017
  • Clausen CA. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manage Res. 2000;18:264–268. doi: 10.1177/0734242X0001800308
  • Cai L, Liu G, Rensing C, Wang G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 2009;9:1–11. doi: 10.1186/1471-2180-9-4
  • Bahar MM, Meghara M, Naidu R. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation. 2012;23:803–812. doi: 10.1007/s10532-012-9567-4
  • Ilyaletdinov AN, Abdrashitova SA. Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans. Mikrobiologiya. 1981;50:197–204.
  • Santini JM, Sly LI, Schnagl RD, Macy JM. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol. 2000;66:92–97. doi: 10.1128/AEM.66.1.92-97.2000
  • Weeger W, Lievremont D, Perret M, et al. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. BioMetals. 1999;12:141–149. doi: 10.1023/A:1009255012328
  • Battaglia-Brunet F, Dictor MC, Garrido F, et al. An arsenic (III)-oxidizing bacterial population: selection, characterization and performance in reactors. J App Microbiol. 2002;93:656–667. doi: 10.1046/j.1365-2672.2002.01726.x
  • Chowdhury R, Sen AK, Karak P, Chatterjee R, Giri AK, Chaudhuri K. Isolation and characterization of an arsenic-resistant bacterium from a bore-well in West Bengal, India. Annals Microbiol. 2009;59:253–258. doi: 10.1007/BF03178325
  • Ruta M, Pepi M, Gaggi C, et al. As(V)-reduction to As(III) by arsenic-resistant Bacillus sp. bacterial strains isolated from low contaminated sediments of the Oliveri-Tindari Lagoon, Italy. Chemistry Ecology. 2011;27:207–219. doi: 10.1080/02757540.2010.547490
  • Trevors JT, Oddie KM, Belliveau BH. Metal resistance in bacteria. FEMS Microbiol Rev. 1985;32:39–54. doi: 10.1111/j.1574-6968.1985.tb01181.x
  • Chang JS, Ren XH, Kim KW. Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines. J Environ Sci. 2008;20:1348–1355. doi: 10.1016/S1001-0742(08)62232-9
  • Chang JS, Kim YH, Kim KW. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Appl Microbiol Biotechnol. 2008;80:155–165. doi: 10.1007/s00253-008-1524-0
  • Oremland RS, Kulp TR, Blum JS. A microbial arsenic cycle in a salt-saturated, extreme environment. Science. 2005;308:1305–1308. doi: 10.1126/science.1110832
  • Ellis PJ, Conrads T, Hille R, Kuhn P. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 angstrom and 2.03 angstrom. Structure. 2001;9:125–132. doi: 10.1016/S0969-2126(01)00566-4
  • Santini JM, Hoven N, Vanden R. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT- 26. J Bacteriol. 2004;186:1614–1619. doi: 10.1128/JB.186.6.1614-1619.2004
  • Davolos D, Pietrangeli B. Phylogenetic analysis on the arsenic-resistant bacteria isolated from three different freshwater environments. Chem Ecol. 2011;27:79–87. doi: 10.1080/02757540.2010.536157
  • Prasad KS, Subramanian V, Paul JS. Purification and characterization of arsenite oxidase from Arthrobacter sp. Biometals. 2009;22:711–721. doi: 10.1007/s10534-009-9215-6
  • Sanders JG. Arsenic cycling in marine systems. Mar Environ Res. 1980;3:257–266. doi: 10.1016/0141-1136(80)90038-0
  • Phillips SE, Taylor ML. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol. 1976;32:392–399.
  • Shaha R, Jha S. Alishewanella sp. strain GIDC-5, Arsenite hyper-tolerant bacteria isolated from industrial effluent of South Gujarat. India Chemistry Ecology. 2013;29:427–436. doi: 10.1080/02757540.2013.774379
  • Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol. 2007;9:934–943. doi: 10.1111/j.1462-2920.2006.01215.x
  • Hamamura N, Macur RE, Korf S, et al. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol. 2009;11:421–431. doi: 10.1111/j.1462-2920.2008.01781.x
  • Wang X, Rathinasabapathi B, Oliveira L, Guilherme L, Ma LQ. Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata. Environ Sci Technol. 2012;46:11259. doi: 10.1021/es300454b
  • Sarubbo LA, Rocha RB Jr, Luna JM, Rufino RD, Santos VA, Banat IM. Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry Ecology. 2015;31:707–723. doi: 10.1080/02757540.2015.1095293
  • Xu L, Luo W, Lu Y, et al. Status and fuzzy comprehensive assessment of metals and arsenic contamination in farmland soils along the Yanghe River, China. Chemistry Ecology. 2011;27:415–426. doi: 10.1080/02757540.2011.595711
  • Xian X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil. 1989;113:257–264. doi: 10.1007/BF02280189
  • Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. App Geochem. 2002;17:517–568. doi: 10.1016/S0883-2927(02)00018-5
  • Craw D, Falconer D, Youngson JH. Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem Geology. 2003;199:71–82. doi: 10.1016/S0009-2541(03)00117-7
  • Stevnson FJ. Humus chemistry: genesis, composition, reactions. 2nd ed. New York, NY: John Wiley & Sons; 1982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.