403
Views
41
CrossRef citations to date
0
Altmetric
Articles

Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India

, , &
Pages 114-130 | Received 30 Jan 2016, Accepted 15 Dec 2016, Published online: 11 Jan 2017

References

  • Megharaj M, Avudainayagam S, Naidu R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol. 2003;47:51–54. doi: 10.1007/s00284-002-3889-0
  • Viti C, Decorosi F, Tatti E, et al. Characterization of chromate-resistant and -reducing bacteria by traditional means and by a high-throughput phenomic technique for bioremediation purposes. Biotechnol Progr. 2007;23:553–559. doi: 10.1021/bp0603098
  • Sureshkumar K, Mariappan V, Muthumari M. Evaluation and bioadsorption of heavy metal using Pseudomonas aeruginosa isolated from electroplating effluent. Int J Environ Biol. 2012;2:169–174.
  • Dhal B, Thatoi HN, Das NN, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater. 2013;250:272–291. doi: 10.1016/j.jhazmat.2013.01.048
  • Okeke BC. Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1. J Ind Microbiol Biotechnol. 2008;35:1571–1579. doi: 10.1007/s10295-008-0399-5
  • Pei QH, Shahir S, Santhana Raj AS, et al. Chromium (VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol. 2009;25:1085–1093. doi: 10.1007/s11274-009-9989-2
  • McCullough J, Hazen T, Benson S, et al. Bioremediation of metals and radionuclides. Germantown (MD): Dept of Energy, Office of Biological and Environmental Research MC 20874; 1999. p. 44–555.
  • Pal A, Paul AK. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol Res. 2004;159:347–354. doi: 10.1016/j.micres.2004.08.001
  • Narayani M, Shetty KV. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol. 2013;43:955–1009. doi: 10.1080/10643389.2011.627022
  • Pandi M, Shashirekha V, Swamy M. Bioabsorption of chromium from retan chrome liquor by cyanobacteria. Microbiol Res. 2009;164:420–428. doi: 10.1016/j.micres.2007.02.009
  • Liang FB, Song YL, Huang CP, et al. Adsorption of hexavalent chromium on a lignin-based resin: equilibrium, thermodynamics, and kinetics. J Environ Chem Eng. 2013;1:1301–1308. doi: 10.1016/j.jece.2013.09.025
  • Alam MZ, Ahmad S. Chromium removal through biosorption and bioaccumulation by bacteria from tannery effluents contaminated soil. Clean Soil Air Water. 2011;39:226–237. doi: 10.1002/clen.201000259
  • Khambhaty Y, Mody KBS, Jha B. Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World J Microbiology Biotechnol. 2009;25:1413–1421. doi: 10.1007/s11274-009-0028-0
  • Dhal B, Thatoi HN, Das NN, et al. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol. 2010;85:1471–1479.
  • Chen JM, Hao OJ. Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol. 1998; 28: 219–251. doi: 10.1080/10643389891254214
  • Cheung KH, Gu JD. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr. 2007;59:8–15. doi: 10.1016/j.ibiod.2006.05.002
  • Wang YT, Shen H. Modelling of Cr(VI) reduction by pure bacterial cultures. Water Res. 1997;31:727–732. doi: 10.1016/S0043-1354(96)00309-0
  • Das S, Mishra J, Das SK, et al. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere. 2014;96:112–121. doi: 10.1016/j.chemosphere.2013.08.080
  • McLean J, Beveridge TJ. Chromate reduction by a pseudomonas isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol. 2001;67:1076–1084. doi: 10.1128/AEM.67.3.1076-1084.2001
  • Mythili K, Karthikeyan B. Bioremediation of Cr(VI) from tannery effluent using Bacillus spp. and Staphylococcus spp. Int Multidiscip Res J. 2011;1:38–41.
  • Daulton TL, Little BJ, Meehan JJ, et al. Microbial reduction of chromium from the hexavalent to divalent state. Geochim Cosmochim Acta. 2007;71:556–565. doi: 10.1016/j.gca.2006.10.007
  • Li B, Pan D, Zheng J, et al. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir. 2008;24:9630–9635. doi: 10.1021/la801851h
  • Kavita B, Keharia H. Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium contaminated soil. 3 Biotechology. 2012;2:79–87.
  • Mistry K, Desai C, Patel K. Chromate reduction by Vogococcus sp. isolated from Cr(VI) contaminated industrial effluent. Electron J Biol. 2010;6:6–12.
  • Fredrickson JK, Kostandarithes HM, Li SW, et al. Reduction of Fe(III), Cr(VI), U(VI) and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol. 2000;66:2006–2011. doi: 10.1128/AEM.66.5.2006-2011.2000
  • Suresh KG, Thatheyus AJ. Bioremediation of chromium, nickel and zinc in electroplating effluent by Escherichia coli. Annu Rev Res Biol. 2013;3:913–920.
  • Essahale A, Malki M, Marı´n I, et al. Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez Tanneries in Morocco. Indian J Microbiol. 2012;52:48–53. doi: 10.1007/s12088-011-0187-1
  • Srivastava S, Ahmad AH, Thakur IS. Removal of chromium and pentachlorophenol from tannery effluents. Bioresour Technol. 2007;98:1128–1132. doi: 10.1016/j.biortech.2006.04.011
  • Alam MZ, Malik A. Chromate resistance, transport and bioreduction by Exiguobacterium sp. ZM-2 isolated from agricultural soil irrigated with tannery effluent. J Basic Microbiol. 2008;48:416–420. doi: 10.1002/jobm.200800046
  • Borgne SL, Paniagua D, Vazquez-Duhalt R. Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol. 2008;15:74–92. doi: 10.1159/000121323
  • Zobell CE. Action of micro-organism on hydrocarbons. Bacteriol Rev. 1946;10:1–49.
  • Calomiris JJ, Armstrong JL, Seidler RJ. Association of metal tolerance with multiple antibiotic resistances of bacteria isolated from drinking water. Appl Environ Microbiol. 1984;47:1238–1242.
  • Holt JG, Krieg NR, Sneath PHA, et al. Bergey’s manual of determinative bacteriology. 9th ed. Baltimore (MD): Williams and Wilkins; 1994.
  • Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121
  • Sharma S, Adholeya A. Hexavalent chromium reduction in tannery effluent by bacterial species isolated from tannery effluent contaminated soil. J Environ Sci Technol. 2012;5:142–154. doi: 10.3923/jest.2012.142.154
  • Determination of hexavalent chromium in drinking water by ion chromatography with post-column derivatization and UV-visible spectroscopic detection. US EPA Method 218.7, Version 1.0 . Cincinnati (OH): United States Environmental Protection Agency 2011. p. 1–30 . Available from: http://water.epa.gov/scitech/drinkingwater/labcert/upload/EPA_Method_218-7.pdf
  • Palatzky P, Caesarl R, Gandhi J, et al. Determination of hexavalent chromium in drinking water according to EPA method 218.7. USA: Metrohm IC Application Work; 2011.
  • Mishra RR, Dhal B, Dutta SK, et al. Optimization and characterization of chromium (VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J Hazard Mater. 2012;227–228:219–226. doi: 10.1016/j.jhazmat.2012.05.063
  • Wang S, Wang W, Jin Z, et al. Screening and diversity of plant growth promoting endophytic bacteria from peanut. Afr J Microbiol Res. 2013;7:875–884.
  • Collins MD, Lund BM, Farrow JAE, et al. Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. J Gen Microbiol. 1983;129:2037–2042.
  • Kim IG, Lee MH, Jung SY, et al. Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol. 2005;55:885–889. doi: 10.1099/ijs.0.63308-0
  • Chaturvedi P, Shivaji S. Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol. 2006;56:2765–2770. doi: 10.1099/ijs.0.64508-0
  • Xu WH, Jian H, Liu YG, et al. Bioreduction of chromate by an isolated Bacillus anthracis Cr-4 with soluble Cr(III) product. Water Air Soil Pollut. 2015;226:1–9. doi: 10.1007/s11270-015-2356-z
  • Kathiravan MN, Karthick R, Muthu N, et al. Sonoassisted microbial reduction of chromium. Appl Biochem Biotechnol. 2010;160:2000–2013. doi: 10.1007/s12010-009-8716-7
  • Srivastava N, Dhal B, Abhilash, et al. Bioreduction of hexavalent chromium by Bacillus cereus isolated from chromite mine overburden soil. Adv Mater Res. 2014; 828: 81–91.
  • Ibrahim ASS, El-Tayeb MA, Elbadawi YB, et al. Isolation and characterization of novel potent Cr(VI) reducing alkaliphilic Amphibacillus sp. KSUCr3 from hypersaline soda lakes. Electron J Biotechnol. 2011;14:1–12.
  • Xu WH, Liu YG, Zeng GM, et al. Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa. Trans Nonferrous Met Soc China. 2009;19:1336–1341. doi: 10.1016/S1003-6326(08)60446-X
  • Gu Y, Xu W, Liu Y, et al. Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product. Environ Sci Pollut Res. 2015;22:6271–6279. doi: 10.1007/s11356-014-3856-x
  • Dhal B, Das NN, Thatoi HN, et al. Bacterial reduction of hexavalent chromium from contaminated overburden soil. Int J Metall Eng. 2012;1:83–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.