183
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Effects of nitrogen and sulphate addition on methane oxidation in the marsh soil of a typical subtropical estuary (Min River) in China

, , , &
Pages 610-623 | Received 20 Sep 2017, Accepted 05 Apr 2018, Published online: 18 Apr 2018

References

  • IPCC. Climate change 2013: the physical science basis. Cambridge: Cambridge University Press; 2013.
  • Waddington JM, Roulet NT. Carbon balance of a boreal patterned peatland. Glob Chang Biol. 2000;6:87–97. doi: 10.1046/j.1365-2486.2000.00283.x
  • Banger K, Tian H, Lu C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Chang Biol. 2012;18:3259–3267. doi: 10.1111/j.1365-2486.2012.02762.x
  • Wang Y, Chen H, Zhu Q, et al. Soil methane uptake by grasslands and forests in China. Soil Biol Biochem. 2014;74:70–81. doi: 10.1016/j.soilbio.2014.02.023
  • Yue P, Li K, Gong Y, et al. A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland. Sci Rep. 2016;6:189. doi:10.1038/srep32064.
  • Eriksson T, Oquist MG, Nilsson M. Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Glob Chang Biol. 2010;16:2130–2144. doi: 10.1111/j.1365-2486.2009.02097.x
  • Gauci V, Dise NB, Howell G, et al. Suppression of rice methane emission by sulfate deposition in simulated acid rain. J Geophys Res. 2008;113:159–169.
  • Gundale MJ, From F, Bach LH, et al. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Glob Chang Biol. 2014;20:276–286. doi: 10.1111/gcb.12422
  • Saikawa E, Naik V, Horowitz LW, et al. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing. Atmos Environ. 2009;43:2814–2822. doi: 10.1016/j.atmosenv.2009.02.017
  • Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China. Nature. 2013;494:459–462. doi: 10.1038/nature11917
  • Eriksson T, Oquist MG, Nilsson M. Effects of decadal deposition of nitrogen and sulfur, and increased temperature, on methane emissions from a boreal peatland. J Geophys Res. 2010;115:653. doi: 10.1029/2010JG001285
  • Meng HN, Song CC, Miao YQ, et al. Response of CH4 emission to moss removal and N addition in boreal peatland of Northeast China. Biogeosciences. 2014;11:4809–4816. doi: 10.5194/bg-11-4809-2014
  • Bragazza L, Freeman C, Jones T, et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA. 2006;103:19386–19389. doi: 10.1073/pnas.0606629104
  • Tian XF, Hu HW, Ding Q, et al. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biol Fert Soils. 2014;50:703–713. doi: 10.1007/s00374-013-0889-0
  • Krüger M, Frenzel P. Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob Chang Biol. 2003;9:773–784. doi: 10.1046/j.1365-2486.2003.00576.x
  • Alam MS, Jia Z. Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil. Front Microbial. 2012;3:246.
  • Kravchenko IK. Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant Soil. 2002;242:157–162. doi: 10.1023/A:1019614613381
  • Min K, Kang H, Lee D. Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biol Biochem. 2011;43:2461–2469. doi: 10.1016/j.soilbio.2011.08.019
  • Mou X, Liu X, Tong C, et al. Responses of CH4 emissions to nitrogen addition and spartina alterniflora invasion in Minjiang River estuary, southeast of China. Chinese Geogr Sci. 2014;24:562–574. doi: 10.1007/s11769-014-0692-3
  • Klemm O, Wrzesinsky T. Fog deposition fluxes of water and ions to a mountainous site in Central Europe. Tellus B. 2007;59:705–714. doi: 10.1111/j.1600-0889.2007.00287.x
  • Roland FA, Darchambeau F, Morana C, et al. Anaerobic methane oxidation in an East African great lake (Lake Kivu). Biogeosci Discuss. 2016. doi:10.5194/bg-2016-300.
  • Purdy K, Nedwell D, Embley T. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microb. 2003;69:3181–3191. doi: 10.1128/AEM.69.6.3181-3191.2003
  • Chin KJ, Conrad R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol. 1995;18:85–102. doi: 10.1111/j.1574-6941.1995.tb00166.x
  • Segarra KE, Comerford C, Slaughter J, et al. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim Cosmochim Ac. 2013;115:15–30. doi: 10.1016/j.gca.2013.03.029
  • Kirwan ML, Megonigal JP. Tidal wetland stability in the face of human impacts and sea-level rise. Nature. 2013;504:53–60. doi: 10.1038/nature12856
  • Administration. FPOaF. Report on the marine environmental quality in Fujian in 2015 2016. Available from: http://www.fujian.gov.cn/xw/ztzl/snfw/hjqx/hyhjzl/fjshyhjzlgb/201608/t20160811_1208890.htm.
  • Cao J, Tie X, Dabberdt WF, et al. On the potential high acid deposition in northeastern China. J Geophys Res Atmos. 2013;118:4834–4846. doi: 10.1002/jgrd.50381
  • Tong C, Wang C, Huang JF, et al. Ecosystem respiration does not differ before and after tidal inundation in brackish marshes of the Min River estuary, Southeast China. Wetlands. 2014;34:225–233. doi: 10.1007/s13157-013-0478-x
  • Li AP, Huang GH, Gao R, et al. Atmospheric wet nitrogen and sulfur depositions of Fuzhou, Jian’ou and Wuyishan in Fujian. J Subtrop Resour Environ. 2015;10:33–40. (In Chinese).
  • Cai ZC, Mosier AR. Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem. 2000;32:1537–1545. doi: 10.1016/S0038-0717(00)00065-1
  • Popp TJ, Chanton JP, Whiting GJ, et al. Evaluation of methane oxidation in therhizosphere of a Carex dominated fen in northcentral Alberta, Canada. Biogeochemistry. 2000;51:259–281. doi: 10.1023/A:1006452609284
  • Praeg N, Wagner AO, Illmer P. Effects of fertilisation, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils. Eur J Soil Biol. 2014;65:96–106. doi: 10.1016/j.ejsobi.2014.10.002
  • Zhang Y, Zhang H, Jia B, et al. Landfill CH4 oxidation by mineralized refuse: effects of NH4+-N incubation, water content and temperature. Sci Total Environ. 2012;426:406–413. doi: 10.1016/j.scitotenv.2012.03.083
  • Luo G, Kiese R, Wolf B, et al. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences. 2013;10:3205–3219. doi: 10.5194/bg-10-3205-2013
  • Thangarajan R, Bolan NS, Naidu R, et al. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environ Sci Pollut R. 2015;22:8843–8854. doi: 10.1007/s11356-013-2191-y
  • Shan Y, Chen D, Guan X, et al. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in inner Mongolia grassland. Soil Biol Biochem. 2011;43:1943–1954. doi: 10.1016/j.soilbio.2011.06.002
  • Sawicka JE, Jørgensen BB, Brüchert V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences. 2012;9:3425–3435. doi: 10.5194/bg-9-3425-2012
  • Gulledge J, Doyle AP, Schimel JP. Different NH4+-inhibition patterns of soil CH4 consumption: a result of distinct CH4-oxidizer populations across sites? Soil Biol Biochem. 1997;29:13–21. doi: 10.1016/S0038-0717(96)00265-9
  • Bodelier PL, Laanbroek HJ. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol. 2004;47:265–277. doi: 10.1016/S0168-6496(03)00304-0
  • Yang N, Lü F, He P, et al. Response of methanotrophs and methane oxidation on ammonium application in landfill soils. Appl Microbiol Biotechnol. 2011;92:1073–1082. doi: 10.1007/s00253-011-3389-x
  • Bradford M, Ineson P, Wookey P, et al. The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: a laboratory study. Soil Biol Biochem. 2001;33:1695–1702. doi: 10.1016/S0038-0717(01)00091-8
  • Bradford M, Wookey P, Ineson P, et al. Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil. Soil Biol Biochem. 2001;33:93–102. doi: 10.1016/S0038-0717(00)00118-8
  • Mochizuki Y, Koba K, Yoh M. Strong inhibitory effect of nitrate on atmospheric methane oxidation in forest soils. Soil Biol Biochem. 2012;50:164–166. doi: 10.1016/j.soilbio.2012.03.013
  • Hu A, Lu Y. The differential effects of ammonium and nitrate on methanotrophs in rice field soil. Soil Biol Biochem. 2015;85:31–38. doi: 10.1016/j.soilbio.2015.02.033
  • Hu MJ, Wilson BJ, Sun ZG, et al. Effects of the addition of nitrogen and sulfate on CH4 and CO2 emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China. Sci Total Environ. 2017;579:292–304. doi: 10.1016/j.scitotenv.2016.11.103
  • Fender AC, Pfeiffer B, Gansert D, et al. The inhibiting effect of nitrate fertilisation on methane uptake of a temperate forest soil is influenced by labile carbon. Biol Fert Soils. 2012;48:621–631. doi: 10.1007/s00374-011-0660-3
  • Chan A, Parkin T. Methane oxidation and production activity in soils from natural and agricultural ecosystems. J Environ Qual. 2001;30:1896–1903. doi: 10.2134/jeq2001.1896
  • Vile MA, Bridgham SD, Wieder RK, et al. Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochem Cy. 2003;17. doi:10.1029/2002GB001966.
  • Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–334. doi: 10.1146/annurev.micro.61.080706.093130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.