134
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Low-cost and efficient adsorbent derived from pyrolysis of Jatropha curcas seeds for the removal of Cu2+ from aqueous solutions

, , , , &
Pages 655-674 | Received 29 Oct 2017, Accepted 26 Apr 2018, Published online: 15 May 2018

References

  • Huang S-Y, Fan C-S, Hou C-H. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. J Hazard Mater. 2014;278:8–15. doi: 10.1016/j.jhazmat.2014.05.074
  • Qiu X, Li N, Yang S, et al. A new magnetic nanocomposite for selective detection and removal of trace copper ions from water. J Mater Chem A. 2015;3:1265–1271. doi: 10.1039/C4TA05452K
  • Yu Y, Shapter JG, Popelka-Filcoff R, et al. Copper removal using bio-inspired polydopamine coated natural zeolites. J Hazard Mater. 2014;273:174–182. doi: 10.1016/j.jhazmat.2014.03.048
  • Aydın H, Bulut Y, Yerlikaya Ç, et al. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manage. 2008;87:37–45. doi: 10.1016/j.jenvman.2007.01.005
  • Qiu X, Han S, Hu Y, et al. Periodic mesoporous organosilicas for ultra-high selective copper (II) detection and sensing mechanism. J Mater Chem A. 2014;2:1493–1501. doi: 10.1039/C3TA14314G
  • Liu Y, Chen J, Chen M, et al. Adsorption characteristics and mechanism of sewage sludge-derived adsorbent for removing sulfonated methyl phenol resin in wastewater. RSC Adv. 2015;5:76160–76169. doi: 10.1039/C5RA17125C
  • Yang G, Wang Z, Xian Q, et al. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv. 2015;5:40117–40125. doi: 10.1039/C5RA02836A
  • Huang X, Liu Y, Liu S, et al. Effective removal of Cr (vi) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Adv. 2016;6:94–104. doi: 10.1039/C5RA22886G
  • Li M, Liu Q, Guo L, et al. Cu(II) removal from aqueous solution by spartina alterniflora derived biochar. Bioresour Technol. 2013;141:83–88. doi: 10.1016/j.biortech.2012.12.096
  • Uzunova S, Minchev L, Uzunov I, et al. Efficient adsorption of thiophene from model fuel by pyrolysed rice husks: factors of influence. Chem Ecol. 2016;32:976–987. doi: 10.1080/02757540.2016.1212850
  • Ma TT, Chang PR, Zheng PW, et al. Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chem Eng. J. 2014;240:595–600. doi: 10.1016/j.cej.2013.10.077
  • Kim KH, Kim J-Y, Cho T-S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol. 2012;118:158–162. doi: 10.1016/j.biortech.2012.04.094
  • Al-Shannag M, Al-Qodah Z, Bani-Melhem K, et al. Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem Eng J. 2015;260:749–756. doi: 10.1016/j.cej.2014.09.035
  • Bhatnagar A, Sillanpää M, Witek-Krowiak A. Agricultural waste peels as versatile biomass for water purification – a review. Chem Eng J. 2015;270:244–271. doi: 10.1016/j.cej.2015.01.135
  • Anastopoulos I, Bhatnagar A, Hameed BH, et al. A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. J Mol Liq. 2017;240:179–188. doi: 10.1016/j.molliq.2017.05.063
  • Chakresh KJ, Davendra SM, Anuj KY. Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process. 2016;3(315):495–523.
  • Anastopoulos I, Karamesouti M, Mitropoulos AC, et al. A review for coffee adsorbents. J Mol Liq. 2017;229:555–565. doi: 10.1016/j.molliq.2016.12.096
  • Anastopoulos I, Kyzas GZ. Composts as biosorbents for decontamination of various pollutants: a review. Water Air Soil Pollut. 2015;226:61–77. doi: 10.1007/s11270-015-2345-2
  • Cao L, Luo G, Zhang S, et al. Bio-oil production from eight selected green landscaping wastes through hydrothermal liquefaction. RSC Adv. 2016;6:15260–15270. doi: 10.1039/C5RA24760H
  • Gai C, Zhang Y, Chen W-T, et al. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis. Energy Convers Manage. 2015;96:330–339. doi: 10.1016/j.enconman.2015.02.056
  • Jin H, Hanif MU, Capareda S, et al. Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. J Environ Chem Eng. 2016;4:365–372. doi: 10.1016/j.jece.2015.11.022
  • Benaïssa H, Elouchdi MA. Removal of copper ions from aqueous solutions by dried sunflower leaves. Chem Eng Process. 2007;46:614–622. doi: 10.1016/j.cep.2006.08.006
  • Feng J, Yang Z, Zeng G, et al. The adsorption behavior and mechanism investigation of Pb(II) removal by flocculation using microbial flocculant GA1. Bioresour Technol. 2013;148:414–421. doi: 10.1016/j.biortech.2013.09.011
  • Hadi P, Barford J, McKay G. Toxic heavy metal capture using a novel electronic waste-based material mechanism, modeling and comparison. Environ Sci Technol. 2013;47:8248–8255.
  • Parus A. Copper(II) ions’ removal from aqueous solution using green horse-chestnut shell as a low-cost adsorbent. Chem Ecol. 2018;34:56–69. doi: 10.1080/02757540.2017.1396452
  • Rao A, Bankar A, Kumar AR, et al. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J Contam Hydrol. 2013;146:63–73. doi: 10.1016/j.jconhyd.2012.12.008
  • Liu S-b, Tan X-f, Liu Y-g, et al. Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Adv. 2016;6:5871–5880. doi: 10.1039/C5RA22142K
  • Gai C, Guo Y, Peng N, et al. N-Doped biochar derived from co-hydrothermal carbonization of rice husk and Chlorella pyrenoidosa for enhancing copper ion adsorption. RSC Adv. 2016;6:53713–53722. doi: 10.1039/C6RA09270E
  • Lee AF, Bennett JA, Manayil JC, et al. Heterogeneous catalysis for sustainable biodiesel productionvia esterification and transesterification. Chem Soc Rev. 2014;43:7887–7916. doi: 10.1039/C4CS00189C
  • Zanotti M, Ruan Z, Bustamente M, et al. A sustainable lignocellulosic biodiesel production integrating solar- and bio-power generation. Green Chem. 2016;18:5059–5068. doi: 10.1039/C6GC00998K
  • Zhang MY, Song LH, Jiang HF, et al. Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions. J Mater Chem A. 2017;5:3434–3446. doi: 10.1039/C6TA10513K
  • Wang Y-Y, Lu H-H, Liu Y-X, et al. Removal of phosphate from aqueous solution by SiO2-biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass. RSC Adv. 2016;6:83534–83546. doi: 10.1039/C6RA15532D
  • Chen D, Zeng Z, Zeng Y, et al. Removal of methylene blue and mechanism on magnetic ɣ-Fe2O3/SiO2 nanocomposite from aqueous solution. Water Resour Ind. 2016;15:1–13. doi: 10.1016/j.wri.2016.05.003
  • Yao Y, Gao B, Inyang M, et al. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater. 2011;190:501–507. doi: 10.1016/j.jhazmat.2011.03.083
  • Batool S, Idrees M, Hussain Q, et al. Adsorption of copper (II) by using derived-farmyard and poultry manure biochars: efficiency and mechanism. Chem Phy Letters. 2017;689:190–198. doi: 10.1016/j.cplett.2017.10.016
  • Li G, Gao S, Zhang G, et al. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides. Chem Eng J. 2014;235:124–131. doi: 10.1016/j.cej.2013.09.021
  • Fang C, Zhang T, Li P, et al. Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar. J Environ Sci. 2015;29:106–114. doi: 10.1016/j.jes.2014.08.019
  • Chen B, Chen Z, Lv S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol. 2011;102:716–723. doi: 10.1016/j.biortech.2010.08.067
  • Ho YS, Mckay G. The sorption of lead(II) ions on peat. Water Res. 1999;33:578–584. doi: 10.1016/S0043-1354(98)00207-3
  • Alimohamadi M, Abolhamd G, Keshtkar A. Pb(II) and Cu(II) biosorption on rhizopus arrhizus modeling mono- and multi-component systems. Miner Eng. 2005;18:1325–1330. doi: 10.1016/j.mineng.2005.08.007
  • Vaghetti JCP, Lima EC, Royer B, et al. Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr(VI) from aqueous solution—kinetics and equilibrium study. Biochem Eng J. 2008;42:67–76. doi: 10.1016/j.bej.2008.05.021
  • Vasanth Kumar K, Ramamurthi V, Sivanesan S. Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae. Dyes Pigm. 2006;69:102–107. doi: 10.1016/j.dyepig.2005.02.005
  • Mohd Din AT, Hameed BH, Ahmad AL. Batch adsorption of phenol onto physiochemical-activated coconut shell. J Hazard Mater. 2009;161:1522–1529. doi: 10.1016/j.jhazmat.2008.05.009
  • Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006;136:681–689. doi: 10.1016/j.jhazmat.2005.12.043
  • Weber WJ, Moris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 1963;89:31–60.
  • Blázquez G, Calero M, Ronda A, et al. Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. J Ind Eng Chem. 2014;20:2754–2760. doi: 10.1016/j.jiec.2013.11.003
  • Grassi DA, Galicio M, Fernández Cirelli A. A homogeneous and low-cost biosorbent for Cd, Pb and Cu removal from aqueous effluents. Chem Ecol. 2011;27:297–309. doi: 10.1080/02757540.2011.565750
  • Wang J, Zheng S, Shao Y, et al. Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci. 2010;349:293–299. doi: 10.1016/j.jcis.2010.05.010
  • Lu H, Zhang W, Yang Y, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012;46:854–862. doi: 10.1016/j.watres.2011.11.058
  • Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–889. doi: 10.1021/ef0502397
  • Wang XS, Zhu L, Lu HJ. Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions. Desalination. 2011;276:154–160. doi: 10.1016/j.desal.2011.03.040
  • Cho D-W, Jeon B-H, Chon C-M, et al. A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V). Chem Eng J. 2012;200-202:654–662. doi: 10.1016/j.cej.2012.06.126
  • Anastopoulos I, Kyzas GZ. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J Mol Liq. 2016;218:174–185. doi: 10.1016/j.molliq.2016.02.059
  • Hannachi Y, Ghorbel A, Lasram T, et al. Removal of Ni(II) ions from aqueous solutions using clinoptilolite: equilibrium, kinetic and thermodynamic studies. Chem Ecol. 2012;28:481–495. doi: 10.1080/02757540.2012.666528
  • Hamed MM, Aly MI, Nayl AA. Kinetics and thermodynamics studies of cobalt, strontium and caesium sorption on marble from aqueous solution. Chem Ecol. 2016;32:68–87. doi: 10.1080/02757540.2015.1112379
  • Zhu X, Liu Y, Zhou C, et al. Novel and high-performance magnetic carbon composite prepared from waste hydrochar for dye removal. ACS Sustain Chem Eng. 2014;2:969–977. doi: 10.1021/sc400547y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.