197
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Permethrin induced oxidative stress and neurotoxicity on the freshwater beetle Laccophilus minutus

, , &
Pages 459-471 | Received 07 Jan 2018, Accepted 10 Dec 2018, Published online: 01 Mar 2019

References

  • Ray S. Levels of toxicity screening of environmental chemicals using aquatic invertebrates - a review. In: Larramendy M, Soloneski S, editors. Invertebrates-experimental models in toxicity screening. Croatia: InTech; 2016. p. 1–11. doi: 10.5772/61746
  • Gilliom RJ. Pesticides in the hydrologic system - what do we know and what’s next. Hydrol Process. 2001;15:3197–3201. doi: 10.1002/hyp.501
  • Martin JD, Crawford CG, Larson, SJ. Pesticides in streams: summary statistics. Preliminary results from cycle I of the national water quality assessment program (NAWQA), 1992–2001. Reston (VA): USA Geological Survey, NAWQA Pesticide National Synthesis Project; 2003. [cited 2004 Aug 24]. Available from http://ca.water.usgs.gov/pnsp/pestsw/Pest-SW_2001_Text.html.
  • Lamiot F. Les pesticides dans l’air ambiant. Pollut Atmos. 2001;170:237–246.
  • Lagadic L, Caquet F, Amiard JC, et al. Biomarqueurs en écotoxicologie, aspect fondamentaux. Paris: Masson; 1997; 479 p.
  • Daaboub J, Ben Cheikh R, Lamari A, et al. Resistance to pyrethroid insecticides in Culexpipienspipiens (Diptera: Culicidae) from Tunisia. Acta Trop. 2008;107:30–36. doi: 10.1016/j.actatropica.2008.04.014
  • Leroux P. Mode d’action des produits phytosanitaires sur les organismes pathogènes des plantes: Equilibres et déséquilibres phytosanitaires dans le monde végétal. C R Biol. 2003;326:9–21. doi: 10.1016/S1631-0691(03)00005-2
  • Zhang SY, Ueyama J, Ito Y, et al. Permethrin may induce adult male mouse reproductive toxicity due to cis isomer not trans-isomer. Toxicology. 2008;248:136–141. doi: 10.1016/j.tox.2008.03.018
  • Sharom MS, Solomon KR. Adsorption-desorption degradation and distribution of permethrin in aqueous systems. J Agric Food Chem. 1981;29:1122–1125. doi: 10.1021/jf00108a005
  • Khazri A, Sellami B, Hanachi A, et al. Neurotoxicity and oxidative stress induced by permethrin in gills of the freshwater mussel Unio ravoisieri. Chem Ecol. 2017;33(1):88–101. doi: 10.1080/02757540.2016.1248948
  • Hill IR. Aquatic organisms and pyrethroids. Pestic Sci. 1989;27:429–457. doi: 10.1002/ps.2780270408
  • Bat L, Raffaelli D. The Corophiumvolutator (Pallas) sediment toxicity test: an inter- laboratory comparison. EU Su Urunleri Dergisi. 1996;13:433–440.
  • Amweg EL, Weston DP, You J, et al. Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol. 2006;40(5):1700–1706. doi: 10.1021/es051407c
  • Stueckle TA, Shock B, Foran CM. Multiple stressor effects of methoprene, permethrin, and salinity on limb regeneration and molting in the mud fiddler crab (Ucapugnax). Environ Toxicol Chem. 2009;28:2348–2359. doi: 10.1897/08-651.1
  • Singh A, Srivastava VK. Toxic effects of synthetic pyrethroid permethrin on the enzyme system of the freshwater fish Channastriatus. Chemosphere. 1999;39:1951–1956. doi: 10.1016/S0045-6535(99)00078-8
  • Jäch MA, Balke M. Global diversity of water beetles (Coleoptera) in freshwater. Freshwater animal diversity assessment. Hydrobiologia. 2008;595:419–442. doi: 10.1007/s10750-007-9117-y
  • Abellán P, Sanchez-Fernandez D, Velasco J, et al. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodivers Conserv. 2005;14:3457–3474. doi: 10.1007/s10531-004-0550-1
  • Samir T. Thoughts on water beetles in a mediterranean environmentInsect physiology and ecology. Ed. Intech; 2017: . p. 1–23. doi:10.5772/66639
  • Balke M, Watts CHS, Cooper SJB, et al. A highly modified stygobiont diving beetle of the genus Copelatus (Coleoptera, Dytiscidae): taxonomy and cladistic analysis based on mitochondrial DNA sequences. Syst Entomol. 2004;29:59–67. doi: 10.1111/j.1365-3113.2004.00229.x
  • Garrido Gonzalez J, Diaz Pazos A, RegilCueto A. Faunaacuática de la Comunidad Foral de Navarra (España) (Col., Adephaga y Polyphaga). Bull de la Soc Entomol de Fr. 1994;99(2):131–148.
  • Touaylia S, Garrido J, Boumaiza M. Chorological and phenologic analysis of the water beetle (Coleoptera, Adephaga and Ployphaga) fauna from Northern Tunisia. Coleopts Bull. 2011;65(3):315–324. doi: 10.1649/072.065.0315
  • Tomlin CDS. The pesticide manual, a world compendium. 11e éd. Farnham (Surrey): The British Crop Protection Council; 1997. 1606 p.
  • Schimmel SC, Garnas RL, Patrick JM, et al. Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J Agric Food Chem. 1983;31:104–113. doi: 10.1021/jf00115a027
  • Boudou A, Ribeyre F. Aquatic ecotoxicology: fundamental concepts and methodologies. Boca Raton (FL): CRC Press; 1989.
  • Pery A, Mons R, Garric J. Modelling of the life cycle of Chironomus species using an energy-based model. Chemosphere. 2005;59:247–253. doi: 10.1016/j.chemosphere.2004.11.083
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Mirsa HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;217:3170–3175.
  • Aebi H. Methods of enzymatic analysis. 2nd ed. New York (NY): ChemiaWeinheium; 1974.
  • Chance B, Saronio C, Leigh JS. Compound C2, a product of the reaction of oxygen and the mixed-valence state of cytochrome oxidase. Biochem J. 1979;177:931–941. doi: 10.1042/bj1770931
  • Ellman GL, Courtney KD, Andres VJ, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9
  • Phyu YL, Palmer CG, Warne MSJ, et al. A comparison of mixture toxicity assessment: examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf. dubia. Chemosphere. 2011;85:1568–1573. doi: 10.1016/j.chemosphere.2011.07.061
  • Marei AE, Ruzo LO, Casida JE. Analysis and persistence of permethrin, cypermethrin, deltamethrin and fenvalerate in the fat and brain of treated rats. J Agric Food Chem. 1982;30:558–562. doi: 10.1021/jf00111a037
  • Alonso MB, Feo ML, Corcellas C, et al. Pyrethroids: a new threat to marine mammals? Environ Int. 2012;47:99–106. doi: 10.1016/j.envint.2012.06.010
  • Stehle S, Schulz R. Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci USA. 2015;112(18):5750–5755. doi:10.1073/pnas.1500232112/-/DCSupplemental doi: 10.1073/pnas.1500232112
  • Feo ML, Ginebreda A, Eljarrat E, et al. Presence of pyrethroid pesticides in water and sediments of Ebro river delta. J Hydrol (Amst). 2010;393:156–162. doi: 10.1016/j.jhydrol.2010.08.012
  • Xu P, Huang L. Effects of α-cypermethrin enantiomers on the growth, biochemical parameters and bioaccumulation in Rana nigromaculata tadpoles of the anuran amphibians. Ecotoxicol Environ Saf. 2017;139:431–438. doi: 10.1016/j.ecoenv.2017.02.015
  • Giray B, Gurbay A, Hincal F. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by vitamin E or allopurinol. Toxicol Lett. 2001;118:139–146. doi: 10.1016/S0378-4274(00)00277-0
  • Sellami B, Louati H, Dellali M, et al. Effects of permethrin exposure on antioxidant enzymes and protein status in Mediterranean clams Ruditapes decussatus. Environ Sci Pollut Res. 2014;21:4461–4472. CHEMISTRY AND ECOLOGY 13. doi: 10.1007/s11356-013-2404-4
  • Valavanidis A, Vlahogianni T, Dassenakis M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf. 2006;64:178–189. doi: 10.1016/j.ecoenv.2005.03.013
  • Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem. 1989;264:7761–7764.
  • Buet A, Barillet S, Camilleri V. Changes in oxidative stress parameters in fish as response to direct uranium exposure. Radioprotection. 2005;40(1):S151–S155. doi: 10.1051/radiopro:2005s1-024
  • Jensen PK. Antimycin-insensitive oxidation of succinate and reduced nicotinamideadenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochimica Biophys Acta. 1966;122(2):157–166. doi: 10.1016/0926-6593(66)90057-9
  • Poderoso JJ, Carreras MC, Lisdero C, et al. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996;328:85–92. doi: 10.1006/abbi.1996.0146
  • Furchgott RF. Endothelium-derived relaxing factor: discovery, early studies, and identifcation as nitric oxide (nobel lecture). Angew Chem, Int Ed. 1999;38:1870–1880. doi:10.1002/(SICI)1521-3773(19990712)38:13/14<1870 doi: 10.1002/(SICI)1521-3773(19990712)38:13/14<1870::AID-ANIE1870>3.0.CO;2-8
  • Lagadic LCT, Amiard JC. Biomarqueurs en écotoxicologie: principes et définitions. In: Lagadic L, Caquet T, Amiard JC, Ramade F, editor. Biomarqueurs en Ecotoxicologie. Aspects Fondamentaux. Paris: Masson; 1997. p. 1–9.
  • Sarkar A, Ray D, Amulya N, et al. Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotoxicology. 2006;15:333–340. doi: 10.1007/s10646-006-0069-1
  • Behrens A, Segner H. Cytochrome P4501A induction in brown trout exposed to small streams of an urbanised area: results of a five-year-study. Environ Pollut. 2005;136:231–242. doi: 10.1016/j.envpol.2005.01.010
  • Brinzer RA, Henderson L, Marchiondo AA, et al. Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival. Insect Biochem Mol Biol. 2015;67:74–86. doi: 10.1016/j.ibmb.2015.09.009
  • Talesa V, Contenti S, Principato GB, et al. Cholinesterases from Maia verricosa and Palinurus vulgaris: a comparative study. Comp Biochem Physiol. 1992;101C:499–503.
  • Laguerre M, LópezGiraldo LJ, Lecomte J, et al. Chain length affects antioxidant properties of chlorogenate esters in emulsion: the cutoff theory behind the polar paradox. J Agric Food Chem. 2009;57(23):11335–11342. doi: 10.1021/jf9026266
  • Singh DK, Agarwal RA. Effect of the synthetic pyrethroid permethrin on the snail Lymnaeaacuminata. Sci Total Environ. 1987;67(2-3):263–267. doi: 10.1016/0048-9697(87)90217-8
  • Roméo M, Gharbi-Bouraoui S, Gnassia BM, et al. Responses of Hexaplex (Murex) trunculus to selected pollutants. Sci Total Environ. 2006;359:135–144. doi: 10.1016/j.scitotenv.2005.09.071
  • Hamza-Chaffai A, Roméo M, Gnassia-Barelli M, et al. Effect of copper and lindane on some biomarkers measured in the clam Ruditapesdecussatus. Bull Environ Contam Toxicol. 1998;61(3):397–404. doi: 10.1007/s001289900776
  • Mora P, Michel X, Narbonne J. Cholinesterase activity as potential biomarker in two bivalves. Environ Toxicol Pharmacol. 1999;7:253–260. doi: 10.1016/S1382-6689(99)00019-8
  • Soderlund DM, Clark JM, Sheets LP, et al. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology. 2002;171(1):3–59. doi: 10.1016/S0300-483X(01)00569-8
  • Choi JS, Soderlund DM. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat sodium channels expressed in Xenopus oocytes. Toxicol Appl Pharmacol. 2006;211(3):233–244. doi: 10.1016/j.taap.2005.06.022
  • Saha S, Kaviraj A. Acute toxicity of synthetic pyrethroidcypermethrin to some freshwater organisms. Bull Environ Contam Toxicol. 2008;80:49–52. doi: 10.1007/s00128-007-9314-4
  • Rao GV, Rao KSJ. Modulation in acetylcholinesterase of rat brain by pyrethroid in-vivo and an in vitro kinetic study. J Neurochem. 1995;65:2259–2266. doi: 10.1046/j.1471-4159.1995.65052259.x
  • Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997;77:591–625. doi: 10.1152/physrev.1997.77.3.591
  • Fournier D, Mutero A. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol Part C. 1994;108:19–31. doi: 10.1016/1367-8280(94)90084-1
  • Hemingway J, Hawkes NJ, McCarroll L, et al. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34(7):653–665. doi: 10.1016/j.ibmb.2004.03.018
  • Ranson H, Jensen B, Wang X, et al. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol. 2000;9:499–507. doi: 10.1046/j.1365-2583.2000.00214.x
  • Ramade F. Précis d’écotoxicologie. Paris: Masson; 1992; X-300 p.
  • Fisher T, Crane M, Callaghan A. Induction of cytochrome P-450 activity in individual Chironomusriparius Meigen larvae exposed to xenobiotics. Ecotoxicol Environ Saf. 2003;54:1–6. doi: 10.1016/S0147-6513(02)00031-3
  • Ecobichon DJ. Carbamate insecticides. In: R Krieger, editor. Handbook of pesticide toxicology. San Diego: Academic Press; 2001. p. 1087–1106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.