155
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

High-resolution seafloor sedimentological mapping: the case study of Bagnoli-Coroglio site, Gulf of Pozzuoli (Napoli), Italy

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 511-528 | Received 25 Jul 2019, Accepted 14 Feb 2020, Published online: 02 Jul 2020

References

  • Fonseca L, Mayer L. Remote estimation of surficial seafloor properties through the application angular range analysis to multibeam sonar data. Mar Geophys Res. 2007;28:119–126. doi: 10.1007/s11001-007-9019-4
  • Lamarche G, Lurton X, Verdier AL, et al. Quantitative characterisation of seafloor substrate and bedforms using advanced processing of multibeam backscatter – application to Cook Strait, New Zealand. Cont Shelf Res. 2011;31:93–109. doi: 10.1016/j.csr.2010.06.001
  • Innangi S, Barra M, Brando A, et al. Construction of the thematic maps of the seabed along the Lucanian Tyrrhenian Coast of Maratea (PZ). Rend Online Soc Geol Ital. 2008;3(2):476–477.
  • Briggs KB, Tang D, Williams KL. Characterization of interface roughness of rippled sand off fort Walton Beach, Florida. IEEE J Ocean Eng. 2002;27:505–514. doi: 10.1109/JOE.2002.1040934
  • Fonseca L, Brown C, Calder B, et al. Angular range analysis of acoustic themes from Stanton Banks Ireland: a link between visual interpretation and multibeam echosounder angular signatures. Appl Acoust [Internet]. 2009;70:1298–1304. DOI:10.1016/j.apacoust.2008.09.008.
  • Pinson S, Stéphan Y, Holland CW. Roughness parameters imaging with a multibeam echosounder. J Acoust Soc Am [Internet]. 2017;141:3532. DOI:10.1121/1.4987460.
  • Ferrini VL, Flood RD. The effects of fine-scale surface roughness and grain size on 300 kHz multibeam backscatter intensity in sandy marine sedimentary environments. Mar Geol [Internet]. 2006;228:153–172. [cited 2013 May 9]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0025322705003610. doi: 10.1016/j.margeo.2005.11.010
  • Innangi S, Di Martino G, Tonielli R, et al. Seafloor habitat mapping on the “Pelagie Islands” MPA (Sicily Channel) using remote sensing object image analysis supported by multibeam bathymetry and ground-truth data. 2018 IEEE Int. Work. Metrol. Sea (MetroSea 2018). 2018;167–172.
  • Innangi S, Di Martino G, Romagnoli C, et al. Seabed classification around Lampione islet, Pelagie Islands marine protected area, Sicily channel. Med Sea J Maps [Internet]. 2019;15:153–164. Available from: https://www.tandfonline.com/doi/full/10.1080/17445647.2019.1567401.
  • Iacono C L, Gràcia E, Diez S, et al. Seafloor characterization and backscatter variability of the Almería Margin (Alboran Sea, SW Mediterranean) based on high-resolution acoustic data. Mar Geol [Internet]. 2008;250:1–18. [cited 2014 Feb 5]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0025322707002794. doi: 10.1016/j.margeo.2007.11.004
  • Simons DG, Snellen M. A Bayesian approach to seafloor classification using multi-beam echo-sounder backscatter data. Appl Acoust [Internet]. 2009;70:1258–1268. Available from: http://dx.doi.org/10.1016/j.apacoust.2008.07.013.
  • Lo Iacono C, Grinyó J, Conlon S, et al. Chapter 55 – Near-pristine benthic habitats on the Francesc Pagès Bank, Alboran Sea, western Mediterranean. In: Harris PT, Baker E, editor. Seafloor geomorphology as benthic habitat. 2nd ed. Elsevier; 2020. p. 889–901. Available from: http://www.sciencedirect.com/science/article/pii/B9780128149607000555.
  • Dartnell P, Gardner J V. Predicting seafloor facies from multibeam bathymetry and backscatter data. Photogramm Eng Rem Sens [Internet]. 2004;70:1081–1091. Available from: http://essential.metapress.com/openurl.asp?genre=article&id=doi:10.14358/PERS.70.9.1081.
  • Karoui I, Fablet R, Boucher JM, et al. Seabed segmentation using optimized statistics of sonar textures. IEEE Trans Geosci Remote Sens. 2009;47:1621–1631. doi: 10.1109/TGRS.2008.2006362
  • Hasan R C, Ierodiaconou D, Laurenson L. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar Coast Shelf Sci. 2012;97:1–9. doi: 10.1016/j.ecss.2011.10.004
  • De Falco G, Tonielli R, Di Martino G, et al. Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont Shelf Res [Internet]. 2010;30:1941–1950. [cited 2013 Jul 20]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0278434310002785. doi: 10.1016/j.csr.2010.09.006
  • Innangi S, Passaro S, Tonielli R, et al. Seafloor mapping using high-resolution multibeam backscatter: The Palinuro Seamount (Eastern Tyrrhenian Sea). J Maps. 2016;12:736–746. doi: 10.1080/17445647.2015.1071719
  • Tonielli R, Innangi S, Budillon F, et al. Distribution of Posidonia oceanica (L.) Delile meadows around Lampedusa Island (Strait of Sicily, Italy). J Maps. 2016;12:249–260. doi: 10.1080/17445647.2016.1195298
  • Innangi S, Tonielli R, Romagnoli C, et al. Seabed mapping in the Pelagie Islands marine protected area (Sicily Channel, southern Mediterranean) using Remote Sensing Object Based Image Analysis (RSOBIA). Mar Geophys Res [Internet]. 2019;40:333–355. DOI:10.1007/s11001-018-9371-6.
  • Innangi S, Barra M, Di Martino G, et al. Reson SeaBat 8125 backscatter data as a tool for seabed characterization (Central Mediterranean, Southern Italy): results from different processing approaches. Appl Acoust [Internet]. 2015;87:109–122. [cited 2014 Sep 30]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003682X14001650. doi: 10.1016/j.apacoust.2014.06.014
  • Micallef A, Le Bas TP, Huvenne VAI, et al. A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res. 2012;39–40:14–26. doi: 10.1016/j.csr.2012.03.008
  • Fakiris E, Blondel P, Papatheodorou G, et al. Multi-frequency, multi-sonar mapping of shallow habitats-efficacy and management implications in the National Marine Park of Zakynthos, Greece. Remote Sens. 2019;11(461):1–23.
  • Feldens P, Schulze I, Papenmeier S, et al. Improved interpretation of marine sedimentary environments using multi-frequency multibeam backscatter data. Geoscience. 2018;8:1–14. doi: 10.3390/geosciences8060214
  • Jackson DR, Winebrenner DP, Ishimaru A. Application of the composite roughness model to high-frequency bottom backscattering. J Acoust Soc Am [Internet]. 1986;79:1410–1422. DOI:10.1121/1.393669.
  • Jackson DR, Briggs KB. High-frequency bottom backscattering: roughness versus sediment volume scattering. J Acoust Soc Am. 1992;92:962–977. doi: 10.1121/1.403966
  • Goff JA, Kraft BJ, Mayer LA, et al. Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties. Mar Geol [Internet]. 2004;209:147–172. [cited 2013 Mar 24]. Available from: http://www.sciencedirect.com/science/article/B6V6M-4CXTXS5-1/2/e50e0c6604c8595d73f424014c7a2015. doi: 10.1016/j.margeo.2004.05.030
  • Sutherland T, Galloway J, Loschiavo R, et al. Calibration techniques and sampling resolution requirements for groundtruthing multibeam acoustic backscatter (EM3000) and QTC VIEWTM classification technology. Estuar Coast Shelf Sci [Internet]. 2007;75:447–458. [cited 2013 Mar 24]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0272771407002156. doi: 10.1016/j.ecss.2007.05.045
  • Amiri-Simkooei AR, Koop L, van der Reijden KJ, et al. Seafloor characterization using multibeam echosounder backscatter data: methodology and results in the north sea. Geoscience. 2019;9(292):1–23.
  • Jackson RD, Winbebrenner PD, Ishimaru A. Application of the composite roughness model to high-frequency bottom backscattering. J Acoust Soc Am. 1986;79:1410–1422. doi: 10.1121/1.393669
  • Hines PC. Theoretical model of acoustic backscatter from a smooth seabed. J Acoust Soc Am [Internet]. 1990;88:324. [cited 2015 Jul 21]. Available from: http://scitation.aip.org/content/asa/journal/jasa/88/1/10.1121/1.399954.
  • Lacharité M, Brown CJ, Gazzola V. Multisource multibeam backscatter data: developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods. Mar Geophys Res. 2017;0:1–16.
  • Siwabessy P, Tseng Y. Seabed habitat mapping in coastal waters using a normal incident acoustic technique. Parameters [Internet]. 2004: 187–192. Available from: http://www.acoustics.asn.au/conference_proceedings/AAS2004/ACOUSTIC/PDF/AUTHOR/AC040063.PDF.
  • Huang Z, Siwabessy J, Cheng H, et al. Using multibeam backscatter data to investigate sediment-acoustic relationships. J Geophys Res Ocean. 2018;123:4649–4665. doi: 10.1029/2017JC013638
  • Collier JS, Brown CJ. Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments. Mar Geol [Internet]. 2005;214:431–449. [cited 2013 Mar 21]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0025322704003196. doi: 10.1016/j.margeo.2004.11.011
  • McGonigle C, Collier JS. Interlinking backscatter, grain size and benthic community structure. Estuar Coast Shelf Sci [Internet]. 2014;147:123–136. DOI:10.1016/j.ecss.2014.05.025.
  • Hofmann HJ. Grain-shape indices and isometric graphs. J Sediment Res [Internet]. 1994;64. [cited 2015 Sep 15]. Available from: http://archives.datapages.com/data/sepm/journals/v63-66/data/064a/064a004/0916.htm.
  • Bell JM, Chantler MJ, Wittig T. Sidescan sonar: a directional filter of seabed texture? IEE Proc Radar Sonar Navig. 1999;146:65–72. doi: 10.1049/ip-rsn:19990266
  • Held P, von Deimling JS. New feature classes for acoustic habitat mapping – a multibeam echosounder point cloud analysis for mapping submerged aquatic vegetation (SAV). Geoscience. 2019;9(235):1–17.
  • Schimel ACG, Beaudoin J, Parnum IM, et al. Multibeam sonar backscatter data processing. Mar Geophys Res [Internet]. 2018;39:121–137. DOI:10.1007/s11001-018-9341-z.
  • Di Martino G, Innangi S, Passaro S, et al. Mapping of seabed morphology of the Bagnoli brownfield site, Pozzuoli (Napoli) Bay, Italy. Chem Ecol. In press. DOI:10.1080/02757540.2020.1735373.
  • Romano E, Bergamin L, Celia Magno M, et al. Temporal changes of metal and trace element contamination in marine sediments due to a steel plant: The case study of Bagnoli (Naples, Italy). Appl Geochem [Internet]. 2018;88:85–94. DOI:10.1016/j.apgeochem.2017.05.012.
  • Sacchi M, Matano F, Molisso F, et al. Geological framework of the Bagnoli-Coroglio coastal zone continental shelf, Pozzuoli (Napoli) Bay. Chem Ecol. 2020. This volume. DOI:10.1080/02757540.2020.1735374.
  • De Pippo T, Pescatore T, Vecchione C. Caratteri granulometrici dei sedimenti dei terrazzi del golfo di Pozzuoli. Mem Soc Geol It. 1988;41:1005–1014.
  • Cocco E, De Magistris MA, De Pippo T. Distribuzione e dispersione dei sedimenti nella piattaforma costiera del golfo di Pozzuoli. Mem Soc Geol It. 1988;41:983–993.
  • Fasciglione P, Barra M, Santucci A, et al. Macrobenthic community status in highly polluted area: a case study from Bagnoli, Naples Bay. Italy Rend Lincei. 2016;27:229–239. doi: 10.1007/s12210-015-0467-5
  • Cecchetti G, Fruttero A, Conti ME. Asbestos reclamation at a disused industrial plant, Bagnoli (Naples, Italy). J Hazard Mater. 2005;122:65–73. doi: 10.1016/j.jhazmat.2005.02.014
  • Adamo P, Arienzo M, Bianco MR, et al. Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy). Sci Total Environ. 2002;295:17–34. doi: 10.1016/S0048-9697(02)00020-7
  • Albanese S, De Vivo B, Lima A, et al. Geochemical baselines and risk assessment of the Bagnoli brownfield site coastal sea sediments (Naples, Italy). J Geochem Explor [Internet]. 2010;105:19–33. DOI:10.1016/j.gexplo.2010.01.007.
  • Parnum IM, Gavrilov AN. High-frequency multibeam echo-sounder measurements of seafloor backscatter in shallow water: part 2 – mosaic production, analysis and classification. Underw Technol Int J Soc Underw [Internet]. 2011;30:13–26. [cited 2013 May 9]. Available from: http://openurl.ingenta.com/content/xref?genre=article&issn=1756-0543&volume=30&issue=1&spage=13. doi: 10.3723/ut.30.013
  • QPS (Ed.). Fledermaus v7.6 manual; 2016.
  • Mallace D. QPS- Fledermaus workshop- FMGeocoder Webinar. Geomar, Kiel, Germay; 2012. p. 1–49.
  • Molisso F, Caccavale M, Capodanno M, et al. Sedimentological analysis of marine deposits off the Bagnoli-Coroglio Site of National Interest (SIN), Pozzuoli (Napoli) Bay. Chem Ecol. In press. This volume.
  • Vallefuoco M, Tamburrino S, Sacchi M, et al. Shallow marine sediments characterization of the Bagnoli brownfield site, Pozzuoli Bay (Italy). Chem Ecol. In press. This volume. DOI:10.1080/02757540.2020.1735372.
  • Pettijohn FJ, Potter PE, Siever R. Sand and sandstone. 2nd ed. New York (NY): Springer-Verlag; 1987.
  • Somma R, Iuliano S, Matano F, et al. High-resolution morpho-bathymetry of Pozzuoli Bay, southern Italy. J Maps. 2016;12:222–230. doi: 10.1080/17445647.2014.1001800
  • Budillon F, Conforti A, Tonielli R, et al. Morfobatimetria del Golfo di Pozzuoli. In: Lirer L, editor. Quad dell’Accademia Pontiana. Napoli: I Campi Flegrei, Storia di un Campo Vulcanico; 2011. p. 105–120.
  • Simeone M, Grech D, Masucci P, et al. Medpan project “territorial analysis for the integrated management of the Posillipo coastline” (Gulf of Naples): benthic biocoenosis survey. Biol Mar Med [Internet]. 2016;23:255–257. Available from: https://search.proquest.com/openview/c1e0b4deea860990093621b09c413813/1?pq-origsite=gscholar&cbl=506323.
  • De Falco G, Budillon F, Conforti A, et al. Sorted bedforms over transgressive deposits along the continental shelf of western Sardinia (Mediterranean Sea). Mar Geol [Internet]. 2015;359:75–88. [cited 2014 Dec 5]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0025322714003533. doi: 10.1016/j.margeo.2014.11.008
  • Goff JA, Mayer LA, Traykovski P, et al. Detailed investigation of sorted bedforms, or “rippled scour depressions,” within the Martha’s Vineyard coastal observatory, Massachusetts. Cont Shelf Res. 2005;25:461–484. doi: 10.1016/j.csr.2004.09.019
  • Coco G, Murray AB. Patterns in the sand: from forcing templates to self-organization. Geomorphology. 2007;91:271–290. doi: 10.1016/j.geomorph.2007.04.023
  • Coco G, Murray AB, Green MO. Sorted bed forms as self-organized patterns: 1. Model development. J Geophys Res Earth Surf. 2007;112:1–18.
  • Coco G, Murray AB, Green MO, et al. Sorted bed forms as self-organized patterns: 2. Complex forcing scenarios. J Geophys Res Earth Surf. 2007;112:1–14.
  • Sacchi M, Pepe F, Corradino M, et al. The Neapolitan yellow tuff caldera offshore the Campi Flegrei: stratal architecture and kinematic reconstruction during the last 15ky. Mar Geol [Internet]. 2014;354:15–33. DOI:10.1016/j.margeo.2014.04.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.