245
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Real herbicide wastewater treatment by combined means of electrocatalysis application and biological treatment

, ORCID Icon, , & ORCID Icon
Pages 382-395 | Received 05 Oct 2019, Accepted 17 Feb 2020, Published online: 27 Feb 2020

References

  • Aimer Y, Benali O, Serrano KG. Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate. Sep Purif Technol. 2018; S1383586618306919.
  • Vymazal J, Březinová T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int. 2015;75:11–20. doi: 10.1016/j.envint.2014.10.026
  • Garcíamancha N, Monsalvo VM, Puyol D, et al. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. J Hazard Mater. 2017;339:320–329. doi: 10.1016/j.jhazmat.2017.06.032
  • Yao YW, Li M, Yang Y, et al. Electrochemical degradation of insecticide hexazinone with Bi-doped PbO2 electrode: influencing factors, intermediates and degradation mechanism. Chemosphere. 2019;216:812–822. doi: 10.1016/j.chemosphere.2018.10.191
  • Abhilash PC, Singh N. Pesticide use and application: an Indian scenario. J Hazard Mater. 2009;165(1):1–12. doi: 10.1016/j.jhazmat.2008.10.061
  • Xu D, Wang S, Zhang J, et al. Supercritical water oxidation of a pesticide wastewater. Chem Eng Res Des. 2015;94:396–406. doi: 10.1016/j.cherd.2014.08.016
  • Youssef AM, El-Naggar ME, Malhat FM, et al. Efficient removal of pesticides and heavy metals from wastewater and the antimicrobial activity of f-MWCNTs/PVA nanocomposite film. J Clean Prod. 2019;206:315–325. doi: 10.1016/j.jclepro.2018.09.163
  • Meijide J, Gómez J, Pazos M, et al. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions. J Hazard Mater. 2016;319:43–50. doi: 10.1016/j.jhazmat.2016.02.064
  • Sharma L, Kakkar R. Hierarchical porous magnesium oxide (Hr-MgO) microspheres for adsorption of an organophosphate pesticide: kinetics, isotherm, thermodynamics, and DFT studies. ACS Appl Mater Interfaces. 2017;9(44):38629–38642. doi: 10.1021/acsami.7b14370
  • Wongcharee S, Aravinthan V, Erdei L, et al. Mesoporous activated carbon prepared from macadamia nut shell waste by carbon dioxide activation: Comparative characterisation and study of methylene blue removal from aqueous solution. Asia-pac J Chem Eng. 2018: e2179. doi: 10.1002/apj.2179
  • Mir NA, Khan A, Muneer M, et al. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment. Sci Total Environ. 2013;458-460(3):388–398. doi: 10.1016/j.scitotenv.2013.04.041
  • Oturan N, Wu J, Zhang H, et al. Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl Catal B-Environ. 2013;140–141(2):92–97. doi: 10.1016/j.apcatb.2013.03.035
  • Martinezhuitle CA, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B-Environ. 2009;87(3):105–145. doi: 10.1016/j.apcatb.2008.09.017
  • Solano AMS, Martínez-Huitle CA, Garcia-Segura S, et al. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueise Blue) dye. Electrochim Acta. 2016;197:210–220. doi: 10.1016/j.electacta.2015.08.052
  • Entezari M, Godini H, Sheikhmohammadi A, et al. Enhanced degradation of polychlorinated biphenyls with simultaneous usage of reductive and oxidative agents over UV/sulfite/TiO2 process as a new approach of advanced oxidation/reduction processes. J Water Process Eng. 2019;32:100983. doi: 10.1016/j.jwpe.2019.100983
  • Cheng HF, Xu WP, Liu JL, et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. J Hazard Mater. 2007;146(1–2):385–392. doi: 10.1016/j.jhazmat.2006.12.038
  • Neto SA, Andrade ARD. Electrooxidation of glyphosate herbicide at different DSA compositions: pH, concentration and supporting electrolyte effect. Electrochim Acta. 2009;54(7):2039–2045. doi: 10.1016/j.electacta.2008.07.019
  • Vlyssides A, Barampouti EM, Mai S, et al. Degradation of methylparathion in aqueous solution by electrochemical oxidation. Environ Sci Technol. 2004;38(22):6125–6131. doi: 10.1021/es049726b
  • Yazdanbakhsh AR, Massoudinegad MR, Eliasi S, et al. The influence of operational parameters on reduce of azithromyin COD from wastewater using the peroxi-electrocoagulation process. J Water Process Eng. 2015;6:51–57. doi: 10.1016/j.jwpe.2015.03.005
  • Fontmorin JM, Siguié J, Fourcade F, et al. Combined electrochemical treatment/biological process for the removal of a commercial herbicide solution, U46D®. Sep Purif Technol. 2014;132:704–711. doi: 10.1016/j.seppur.2014.06.024
  • Zou JX, Peng XL, Li M, et al. Electrochemical oxidation of COD from real textile wastewaters: kinetic study and energy consumption. Chemosphere. 2016;171:332–338. doi: 10.1016/j.chemosphere.2016.12.065
  • Zourab S, Ghalwa NA, Zaggout FR, et al. Electrochemical degradation of herbicidal and pure 2, 4-dichlorophenoxy acetic acid on Pb/PbO2 modified electrodes. J Dispersion Sci Technol. 2009;30(5):712–719. doi: 10.1080/01932690802553874
  • Liu W, Chen Y, Li H, et al. Electrochemical degradation of 2, 5-dichloro-1, 4-phenylenediamine by anodic oxidation. Water Sci Technol. 2013;67(10):2177–2183. doi: 10.2166/wst.2013.089
  • Yao YW, Zhao MM, Zhao CM, et al. Preparation and properties of PbO2 -ZrO2 nanocomposite electrodes by pulse electrodeposition. Electrochim Acta. 2014;117(4):453–459. doi: 10.1016/j.electacta.2013.11.150
  • He XW, Liu LY, Wang H, et al. Electrochemical treatment of residual ammonia nitrogen in biologically pretreated coking wastewater with three-dimensional electrodes. Water Sci Technol. 2011;63(11):2732–2736. doi: 10.2166/wst.2011.600
  • Wang Y, Shen CC, Zhang MM, et al. The electrochemical degradation of ciprofloxacin using a SnO2 -Sb/Ti anode: Influencing factors, reaction pathways and energy demand. Chem Eng J (Lausanne. 2016;296:79–89. doi: 10.1016/j.cej.2016.03.093
  • Dai QZ, Zhou JZ, Meng XY, et al. Electrochemical oxidation of cinnamic acid with Mo modified PbO2 electrode: electrode characterization, kinetics and degradation pathway. Chem Eng J (Lausanne. 2016;289(13):239–246. doi: 10.1016/j.cej.2015.12.054
  • Yazdanbakhsh AR, Mohammadi AS, Sardar M, et al. COD removal from synthetic wastewater containing azithromycin using combined coagulation and a Fenton-like process. Environ Eng Manag J. 2014;13(12):2929–2936. doi: 10.30638/eemj.2014.330
  • Prajapati AK, Chaudhari PK. Electrochemical treatment of rice grain-based distillery effluent: chemical oxygen demand and colour removal. Environ Technol. 2014;35(2):242–249. doi: 10.1080/09593330.2013.824507
  • Fang Z, Cheng SC, Cao X, et al. Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland. Environ Tech Let. 2016;38(8):1051–1060. doi: 10.1080/09593330.2016.1217280
  • Duan XY, Ma F, Chang LM. Electrochemical degradation of 4-chlorophenol in aqueous solution using modified PbO2 anode. Water Sci Technol. 2012;66(11):2468–2474. doi: 10.2166/wst.2012.440
  • Godini H, Sheikhmohammadi A, Abbaspour L, et al. Energy consumption and photochemical degradation of Imipenem/Cilastatin antibiotic by process of UVC/Fe2+/H2O2 through response surface methodology. Optik (Stuttg). 2019;182:1194–1203. doi: 10.1016/j.ijleo.2019.01.071
  • Jiang S, Xiang P, Jiang S, et al. Electrochemical oxidation of mustard tuber wastewater on boron-doped diamond anode. Desalin Water Treat. 2015;54(11):3184–3191. doi: 10.1080/19443994.2014.975285
  • Dargahi A, Ansari A, Nematollahi D, et al. Parameter optimization and degradation mechanism for electrocatalytic degradation of 2, 4-diclorophenoxyacetic acid (2, 4-D) herbicide by lead dioxide electrodes. RSC Adv. 2019;9(9):5064–5075. doi: 10.1039/C8RA10105A
  • Sarkhosh M, Sadani M, Abtahi M, et al. Enhancing photo-degradation of ciprofloxacin using simultaneous usage of eaq− and ·OH over UV/ZnO/I-process: efficiency, kinetics, pathways, and mechanisms. J Hazard Mater. 2019;377:418–426. doi: 10.1016/j.jhazmat.2019.05.090
  • Yazdanbakhsh A, Eslami A, Moussavi G, et al. Photo-assisted degradation of 2, 4, 6-trichlorophenol by an advanced reduction process based on sulfite anion radical: degradation, dechlorination and mineralization. Chemosphere. 2018;191:156–165. doi: 10.1016/j.chemosphere.2017.10.023
  • Yamamoto T, Iimura K, Satone H, et al. Ozonation of aqueous phenol using high-silica zeolite in an aerated mixing vessel. Asia-pac J Chem Eng. 2018;13(2):e2175. doi: 10.1002/apj.2175
  • Sheikhmohammadi A, Yazdanbakhsh A, Moussavi G, et al. Degradation and COD removal of trichlorophenol from wastewater using sulfite anion radicals in a photochemical process combined with a biological reactor: mechanisms, degradation pathway, optimization and energy consumption. Process Saf Environ. 2019;123:263–271. doi: 10.1016/j.psep.2019.01.020
  • Mousset E, Wang ZX, Olvera-Vargas H, et al. Advanced electrocatalytic pre-treatment to improve the biodegradability of real wastewater from the electronics industry – a detailed investigation study. J Hazard Mater. 2018;360:552–559. doi: 10.1016/j.jhazmat.2018.08.023
  • Thiam A, Sirés I, Salazar R, et al. On the performance of electrocatalytic anodes for photoelectro-Fenton treatment of synthetic solutions and real water spiked with the herbicide chloramben. J Environ Manage. 2018;224:340–349. doi: 10.1016/j.jenvman.2018.07.065
  • Ramrakhiani L, Ghosh S, Mandal AK, et al. Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation. Chem Eng J (Lausanne). 2019;361:1063–1077. doi: 10.1016/j.cej.2018.12.163
  • Zeng S, Qin X, Xia L. Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem Eng J. 2017;119(Complete):92–100. doi: 10.1016/j.bej.2016.12.016
  • Souza FL, Saéz C, Llanos J, et al. Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2, 4-D. Chem Eng J (Lausanne). 2015;277:64–69. doi: 10.1016/j.cej.2015.04.118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.