323
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Effective immobilisation of chromium in a polluted calcareous soil using modified biochar and bacterial inoculation

, , , &
Pages 827-838 | Received 23 Sep 2019, Accepted 25 Jun 2020, Published online: 06 Jul 2020

References

  • Xiong T, Dumat C, Pierart A, et al. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China. Environ Geochem Health. 2016;38(6):1283–1301. doi: 10.1007/s10653-016-9796-2
  • Kang CH, Kwon YJ, So JS. Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng. 2016;89:64–69. doi: 10.1016/j.ecoleng.2016.01.023
  • Cui M, Lee Y, Choi J, et al. Evaluation of stabilizing materials for immobilization of toxic heavy metals in contaminated agricultural soils in China. J Clean Prod. 2018;193:748–758. doi: 10.1016/j.jclepro.2018.05.105
  • Jarrah M, Ghasemi-Fasaei R, Ronaghi A, et al. Enhanced Ni phytoextraction by effectiveness of chemical and biological amendments in sunflower plant grown in Ni-polluted soils. Chem Ecol. 2019;35(8):732–745. doi: 10.1080/02757540.2019.1644325
  • Prado C, Ponce SC, Pagano E, et al. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquat Toxicol. 2016;175:213–221. doi: 10.1016/j.aquatox.2016.03.027
  • Hu Y, Huang YZ, Liu YX. Influence of iron plaque on chromium accumulation and translocation in three rice (Oryza sativa L.) cultivars grown in solution culture. Chem Ecol. 2014;30(1):29–38. doi: 10.1080/02757540.2013.829050
  • Ashraf A, Bibi I, Niazi NK, et al. Chromium (VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremediat. 2017;19(7):605–613. doi: 10.1080/15226514.2016.1256372
  • Anastopoulos I, Anagnostopoulos VA, Bhatnagar A, et al. A review for chromium removal by carbon nanotubes. Chem Ecol. 2017;33(6):572–588. doi: 10.1080/02757540.2017.1328503
  • Khan S, Rehman S, Khan AZ, et al. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotox Environ Safe. 2010;73(7):1820–1827. doi: 10.1016/j.ecoenv.2010.08.016
  • Nawab J, Khan S, Aamir M, et al. Organic amendments impact the availability of heavy metal (loid) s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor. Environ Sci Pollut Res. 2016;23(3):2381–2390. doi: 10.1007/s11356-015-5458-7
  • Broadway A, Cave MR, Wragg J, et al. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Sci Total Environ. 2010;409(2):267–277. doi: 10.1016/j.scitotenv.2010.09.007
  • Ahmed F, Hossain M, Abdullah AT, et al. Public health risk assessment of chromium intake from vegetable grown in the wastewater irrigated site in Bangladesh. Pollution. 2016;2(4):425–432.
  • Rajendran M, Shi L, Wu C, et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil–rice system. Chemosphere. 2019;222:314–322. doi: 10.1016/j.chemosphere.2019.01.149
  • Bai J, Xun P, Morris S, et al. Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: the CARDIA Trace element study. Sci Rep. 2015;5:15606. doi: 10.1038/srep15606
  • Eskin N. Chromium: is it essential and is it safe. Vitam Miner. 2016;5:e144.
  • Mohapatra RK, Parhi PK, Thatoi H, et al. Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India. Chem Ecol. 2017;33(2):114–130. doi: 10.1080/02757540.2016.1275586
  • Shahid M, Shamshad S, Rafiq M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere. 2017;178:513–533. doi: 10.1016/j.chemosphere.2017.03.074
  • Sharma P, Kumar A, Bhardwaj R. Plant steroidal hormone epibrassinolide regulate–heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exper Bot. 2016;122:1–9. doi: 10.1016/j.envexpbot.2015.08.005
  • Wang YY, Ji HY, Lyu HH, et al. Simultaneous alleviation of Sb and Cd availability in contaminated soil and accumulation in Lolium multiflorum Lam. after amendment with Fe–Mn-modified biochar. J Clean Prod. 2019;231:556–564. doi: 10.1016/j.jclepro.2019.04.407
  • Khan S, Chao C, Waqas M, et al. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol. 2013;47(15):8624–8632. doi: 10.1021/es400554x
  • Patra JM, Panda SS, Dhal NK. Biochar as a low-cost adsorbent for heavy metal removal: a review. Int J Biosci. 2017;6:1–7.
  • Manolikaki I, Diamadopoulos E. Positive effects of biochar and biochar-compost on maize growth and nutrient availability in two agricultural soils. Commun Soil Sci Plant Anal. 2019;50:512–526. doi: 10.1080/00103624.2019.1566468
  • Lu HP, Li ZA, Gascó G, et al. Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci Total Environ. 2018;622:892–899. doi: 10.1016/j.scitotenv.2017.12.056
  • Sigmund G, Poyntner C, Piñar G, et al. Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. J Hazard Mater. 2018;345:107–113. doi: 10.1016/j.jhazmat.2017.11.010
  • Yu J, Jiang C, Guan Q, et al. Enhanced removal of Cr (VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere. 2018;195:632–640. doi: 10.1016/j.chemosphere.2017.12.128
  • Zhang M, Gao B, Yao Y, et al. Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ. 2012;435-436:567–572. doi: 10.1016/j.scitotenv.2012.07.038
  • Zhang W, Wang L, Sun H. Modifications of black carbons and their influence on pyrene sorption. Chemosphere. 2011;85(8):1306–1311. doi: 10.1016/j.chemosphere.2011.07.042
  • Zhou Y, Gao B, Zimmerman AR, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Engin J. 2013;231:512–518. doi: 10.1016/j.cej.2013.07.036
  • Uchimiya M, Wartelle LH, Klasson KT, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem. 2011;59(6):2501–2510. doi: 10.1021/jf104206c
  • Qiu Y, Cheng H, Xu C, et al. Surface characteristics of crop-residue-derived black carbon and lead (II) adsorption. Water Res. 2008;42(3):567–574. doi: 10.1016/j.watres.2007.07.051
  • Cervantes C, Campos-García J, Devars S, et al. Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev. 2001;25(3):335–347. doi: 10.1111/j.1574-6976.2001.tb00581.x
  • Asilian E, Ghasemi-Fasaei R, Ronaghi A, et al. Effects of microbial inoculations and surfactant levels on biologically-and chemically-assisted phytoremediation of lead-contaminated soil by maize (Zea mays L.). Chem Ecol. 2018;34(10):964–977. doi: 10.1080/02757540.2018.1520844
  • Bouyoucos GJ. Hydrometer method improved for making particle size analysis of soil. Agron J. 1962;54:464–465. doi: 10.2134/agronj1962.00021962005400050028x
  • Chapman HD. Cation exchange capacity. In: Black CA, Evans DD, Ensminger LE, White JL, Clark FE, editor. Methods of soil analysis part 2. Chemical and microbiological properties. Monogr. 9. 2nd ed. Madison, WI: Agronomy Society of America and Soil Science Society of America; 1965. p. 891–901.
  • Jackson ML. Soil chemical analysis. Englewood Cliffs (NJ): Prentice-Hall; 1958.
  • Allison LE, Moodie CD. Carbonate. In: Black CA, Evans DD, Ensminger LE, White JL, Clark FE, editor. Methods of soil analysis part 2. Chemical and microbiological properties. Monogr. 9. 2nd ed. Madison, WI: Agronomy Society of America and Soil Science Society of America; 1965. p. 1379–1396.
  • Hataf N, Ghadir P, Ranjbar N. Investigation of soil stabilization using chitosan biopolymer. J Clean Prod. 2018;170:1493–1500. doi: 10.1016/j.jclepro.2017.09.256
  • Heidari F, Razavi M, Bahrololoom ME, et al. Preparation of natural chitosan from shrimp shell with different deacetylation degree. Mater Res Innov. 2018;22(3):177–181. doi: 10.1080/14328917.2016.1271591
  • Agrafioti E, Kalderis D, Diamadopoulos E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manage. 2014;133:309–314. doi: 10.1016/j.jenvman.2013.12.007
  • Wang S, Gao B, Zimmerman AR, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol. 2015;175:391–395. doi: 10.1016/j.biortech.2014.10.104
  • Maiz I, Esnaola MV, Millan E. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci Total Environ. 1997;206(2–3):107–115. doi: 10.1016/S0048-9697(97)00223-4
  • Jarrah M, Ghasemi-Fasaei R, Karimian N, et al. Investigation of arbuscular mycorrhizal fungus and EDTA efficiencies on lead phytoremediation by sunflower in a calcareous soil. Bioremediat J. 2014;18(1):71–79. doi: 10.1080/10889868.2013.847401
  • Guan YJ, Hu J, Wang XJ, et al. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B. 2009;10(6):427–433. doi: 10.1631/jzus.B0820373
  • Lyu H, Zhao H, Tang J, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere. 2018;194:360–369. doi: 10.1016/j.chemosphere.2017.11.182
  • Shukla OP, Dubey S, Rai UN. Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol. 2007;78(3-4):252–257. doi: 10.1007/s00128-007-9155-1
  • Shanker AK, Cervantes C, Loza-Tavera H, et al. Chromium toxicity in plants. Environ Int. 2005;31(5):739–753. doi: 10.1016/j.envint.2005.02.003
  • Kabata-Pendias A. Trace elements in soils and plants. Boca Raton London New York Washington, D.C.: CRC Press; 2010.
  • Zhang J, Zhang J, Wang M, et al. Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. J Soil Sediment. 2019;19(5):2313–2321. doi: 10.1007/s11368-018-02226-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.