169
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Silver nanoparticles (AgNPs) alleviate naphthalene-triggered oxidative stress and physiological deficiencies in Moringa oleifera

, ORCID Icon &
Pages 15-31 | Received 29 Apr 2020, Published online: 14 Sep 2020

References

  • Mukhopadhyay S, Masto RE, Tripathi RC, et al. Application of soil quality indicators for the phytorestoration of mine spoil dumps. . Phytomanag Poll Sites. Chapter 14. 2019: 361–388. doi:10.1016/B978-0-12-813912-7.00014-4.
  • Liu L, Li W, Song W, et al. Remediation techniques for heavy metal contaminated soils: principles and applicability. Sci Total Environ. 2018;633:206–219. doi: 10.1016/j.scitotenv.2018.03.161
  • Azeez L, Adejumo AL, Lateef A, et al. Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant Physiol Biochem. 2019;139:283–292. doi: 10.1016/j.plaphy.2019.03.030
  • Souza CV, Corrêa SM. Polycyclic aromatic hydrocarbons in diesel emission, diesel fuel and lubricant oil. Fuel. 2016;185:925–931. doi: 10.1016/j.fuel.2016.08.054
  • Rasheed T, Bilal M, Nabeel F, et al. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Inter. 2019;122:52–66. doi: 10.1016/j.envint.2018.11.038
  • Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian J Petroleum. 2016;25:107–123. doi: 10.1016/j.ejpe.2015.03.011
  • Lankin AV, Kreslavski VD, Vasilyeva GK, et al. Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. Plant Physiol Biochem. 2014;79(11):1216–1225.
  • Yang B, Liu S, Liu Y, et al. PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China. Sci Total Environ. 2017;574:358–368. doi: 10.1016/j.scitotenv.2016.09.058
  • Leung HM, Yue PYK, Sze SCY, et al. Behavioural toxicity studies of Cyclope neritea and Nassarius mutabilis exposed to polycyclic aromatic hydrocarbons. Environ Sci Poll Res. 2020;27:6695–6700. doi: 10.1007/s11356-019-07250-z
  • Tao W, Lin J, Wang W, et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. Ecotox Environ Saf. 2020;189:109994. doi: 10.1016/j.ecoenv.2019.109994
  • Mahgoub HB. Nanoparticles used for extraction of polycyclic aromatic hydrocarbons. J Chem. 2019. doi: 10.1155/2019/4816849
  • Birolli WG, Santos DA, Alvarenga N, et al. Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Marine Poll Bull. 2018;129(2):525–533. doi: 10.1016/j.marpolbul.2017.10.023
  • Agoun-Bahar S, Djebbar R, Achour TN, et al. Soil-to-plant transfer of naphthalene and its effects on seedlings pea (Pisum sativum L.) grown on contaminated soil. Environ Technol. 2019;40:3713–3723. doi: 10.1080/09593330.2018.1485752
  • Shtangeeva I, Perämäki P, Niemelä M, et al. Potential of wheat (Triticum aestivum L.) and pea (Pisum sativum) for remediation of soils contaminated with bromides and PAHs. Inter J Phytoremed. 2018;20(6):560–566. doi: 10.1080/15226514.2017.1405375
  • Sivaram AK, Logeshwaran P, Lockington R, et al. Phytoremediation efficacy assessment of polycyclic aromatic hydrocarbons contaminated soils using garden pea (Pisum sativum) and earthworms (Eisenia fetida). Chemosphere. 2019;229:227–235. doi: 10.1016/j.chemosphere.2019.05.005
  • Ahammed GJ, Choudhary SP, Chen S, et al. Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot. 2012;63(2):695–709. doi: 10.1093/jxb/err313
  • Huang Y, Fulton AN, Keller AA. Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Sci Total Environ. 2016;571:1029–1036. doi: 10.1016/j.scitotenv.2016.07.093
  • Desoky EM, Elrys AS, Rady MM. Integrative Moringa and Licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metal contaminated saline soil. Ecotoxicol Environ Saf. 2019;169:50–60. doi: 10.1016/j.ecoenv.2018.10.117
  • Rizwan M, Ali S, Abbas T, et al. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manag. 2018;206:676–683. doi: 10.1016/j.jenvman.2017.10.035
  • Hassan SSM, Abdel-Shafy HI, Mansour MSM. Removal of pyrene and benzo(a)pyrene micropollutant from water via adsorption by green synthesized iron oxide nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2018;9:015006. doi: 10.1088/2043-6254/aaa6f0
  • Liu B, Chen B, Lee K, et al. Removal of naphthalene from offshore produced water through immobilized nano-TiO2 aided photo-oxidation. Water Quality J Canada. 2016;51(3):246–255. doi: 10.2166/wqrjc.2016.027
  • Azeez L, Lateef A, Wahab AA, et al. Phytomodulatory effects of silver nanoparticles on Corchorus olitorius: Its antiphytopathogenic and hepatoprotective potentials. Plant Physiol Biochem. 2019;139:109–117. doi: 10.1016/j.plaphy.2018.12.006
  • Azeez L, Lateef A, Adebisi SA. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl Nanosci. 2017;7(1–2):59–66. doi: 10.1007/s13204-017-0546-2
  • Azeez L, Adejumo AL, Ogunbode SM, et al. Influence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringa oleifera and risk assessments on human health. Food Measure. 2020;14:2185–2195. doi: 10.1007/s11694-020-00465-6
  • Lateef A, Azeez MA, Asafa TB, et al. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J Taibah Uni Sci. 2016;10:551–562. doi: 10.1016/j.jtusci.2015.10.010
  • Page A, Miller RH, Keeney DR. Soil analysis Part 2. Chemical and microbiological properties. ASA, SSSA, Madison, Wisconsin, USA; 1982.
  • Motsara MR, Roy RN. Guide to laboratory establishment for plant nutrient analysis. Fertilizer and plant nutrition bulletin. Rome: Food and Agriculture Organization of the United Nations; 2008.
  • Gupta SD, Agarwal A, Pradhan S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol Environ Saf. 2018;161:624–633. doi: 10.1016/j.ecoenv.2018.06.023
  • Arnon DI. Copper enzymes in chloroplasts. Phenol oxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1
  • Lateef A, Azeez MA, Asafa TB, et al. Cocoa pod husk extract mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J Nanostruct Chem. 2016;6(2):159–169. doi: 10.1007/s40097-016-0191-4
  • Ogunkunle CO, Jimoh MA, Asogwa NT, et al. Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotoxicol Environ Saf. 2018;155:86–93. doi: 10.1016/j.ecoenv.2018.02.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.