194
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

2,4,6-Trichlorophenol (TCP) removal from aqueous solution using Canna indica L.: kinetic, isotherm and Thermodynamic studies

ORCID Icon &
Pages 64-82 | Received 14 Jun 2020, Accepted 04 Sep 2020, Published online: 18 Sep 2020

References

  • Siva Kumar N, Asif M, Al-Hazzaa MI, et al. Biosorption of 2,4,6-trichlorophenol from aqueous medium using agro-waste: pine (Pinus densiflora Sieb) bark powder. Acta Chim Slov. 2018;65:221–230.
  • Sahnoun S, Boutahala M, Zaghouane-Boudiaf H, et al. Trichlorophenol removal from aqueous solutions by modified halloysite: kinetic and equilibrium studies. Desalin Water Treat. 2016;57:15941–15951.
  • Fan J, Zhang J, Zhang C, et al. Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination. 2011;267:139–146.
  • Siva Kumar N, Woo HS, Min K. Equilibrium and kinetic studies on biosorption of 2,4,6-trichlorophenol from aqueous solutions by Acacia leucocephala bark. Colloids Surf B Biointerfaces. 2012;94:125–132.
  • Chen M, Tang R, Fu G, et al. Association of exposure to phenols and idiopathic male infertility. J Hazard Mater. 2013;250-251:115–121.
  • Olayinka AI, Ademola FA, Emmanuel IA, et al. Assessment of Organochlorine and Organophosphorus pesticides residue in water and sediments from Ero River in South Western Nigeria. J Chem Biol Phys Sci D. 2015;5(4):4679–4690.
  • Ejiako JE. Assessement of polycyclicaromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides and heavy metals In Fish species from Oguta Lake. Unpublished M.Sc. Thesis. Submitted to the Department of Chemistry, Imo State University, Nigeria, 2019.
  • Halappa GTP, John DL, Ruth GK. A comprehensive study of risk assessment for a hazardous compound of public health concern. Water Air Soil Pollut. 1985;24(2):189.
  • Gao J, Linghua L, Xiaoru L, et al. Levels and spatial distribution of chlorophenols–2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. Chemosphere. 2017;71:1181–1187.
  • USEPA. 2,4,6 Trichlorophenol. United States Environmental Protection Agency, 2000. https://www3.epa.gov/ttn/atw/hlthef/tri-phen.html.
  • Ogunniyi TA, Oni PO, Juba A, et al. Disinfectants/antiseptics in the management of Guinea worm ulcers in the rural areas. Acta Trop. 2000;74(1):33–38. doi:10.1016/S0001-706X(99)00057-1.
  • Hameed BH. Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay. Colloids Surf, A. 2007;307:45–52. doi:10.1016/j.colsurfa.2007.05.002.
  • Uddin M, Islam M, Abedin M. Adsorption of phenol from aqueous solution by water hyacinth. ARPN J Eng Appl Sci. 2007;2:11–16.
  • Zazouli MA, Balarak D, Mahdavi Y. Application of Azolla for 2, 4, 6-trichlorophenol (TCP) removal from aqueous solutions. Arch Hyg Sci. 2013;2(4):143–149.
  • Nadavala SK, Mohammad A, Anesh MP, et al. Equilibrium and kinetic studies of biosorptive removal of 2,4,6-trichlorophenol from aqueous solutions using untreated agro-waste pine cone Biomass. Process. 2019;7(757):1–17. doi:10.3390/pr7100757.
  • Singh S, Haberl R, Moog O, et al. Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal—a model for DEWATS. Ecol Eng. 2009;35:654–660.
  • Zhang DQ, Jinadasa K, Gersberg RM, et al. Application of constructed wetlands for wastewater treatment in developing countries: A review of recent developments (2000–2013). J Environ Manage. 2014;141:116–131.
  • Tran DH, Vi TMH, Dang TTH, et al. Pollutant removal by Canna Generalis in tropical constructed wetlands for domestic wastewater treatment. Glob J Environ Sci Manage. 2019;5(3):331–344.
  • Isiuku BO, Enyoh CE. Water pollution by heavy metal and organic pollutants: brief review of sources, effects and progress on remediation with aquatic plants. Anal Methods Environ Chem J. 2019;2(3):5–38. doi:10.24200/amecj.v3.i03.66.
  • Cooke I. The gardener's guide to growing Canna. Eastbourne, USA: Timber Press; 2001.
  • Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201–217. doi:10.11646/phytotaxa.261.3.1.
  • Enyoh CE, Isiuku BO. Characterisation of some soils from flood basin in Amakohia, Owerri, Nigeria. Int J Environ Anal Chem. 2020. doi: 10.1080/03067319.2020.1773455
  • Gunarathna MHJP, Ranasingha AI, Rathnayake SC, et al. Can Canna indica use as a phytoremediation agent in mitigating high pollution concentrations in reverse Osmosis concentrate? Int J Adv Agric Environ Eng. 2016;3(1):52–56. doi:10.15242/IJAAEE.ER0116025.
  • Cule N, Dragica V, Marija N, et al. Phytoremediation potential of canna indica l. in water contaminated with lead. Fresenius Environ Bull. 2016;25(9):3728–3733.
  • Diagboya PN, Olu-Owolabi BI, Adebowale KO. Distribution and interactions of pentachlorophenol in soils: the roles of soil iron oxides and organic matter. J Contaminant Hydrol. 2016;191:99–106.
  • Kumar NS, Asif M, Al-Hazzaa MI. Adsorptive removal of phenolic compounds from aqueous solutions using pine cone biomass: kinetics and equilibrium studies. Environ Sci Pollut Res. 2018;25:21949–21960.
  • Bhaskaran K, Vijaya N, Tumbath A, et al. Phytoremediation of perchlorate by free floating macrophytes. J Hazard Mater. 2013;260:901–906. doi:10.1016/j.jhazmat.2013.06.008.
  • Diyanati R, Yazdani J, Belarak D. Effect of sorbitol on phenol removal rate by lemna minor. J Mazandaran Univ Med Sci. 2013;22:58–65.
  • Dyanati-Tilaki R, Yousefi Z, Yazdani-Cherati J. The ability of azolla and lemna minor biomass for adsorption of phenol from aqueous solutions. J Mazandaran Univ Med Sci. 2013;23(106):140–146.
  • Dyanati RA, Yousefi ZA, Cherati JY. Investigating phenol absorption from aqueous solution by dried azolla. J Mazandaran Univ Med Sci. 2013;22:13–20.
  • Poulopoulos SG, Nikolaki M, Karampetsos D, et al. Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction. J Hazard Mater. 2008;153:582–587.
  • Neag E, Dana M, Andrada M. Isotherm and kinetic modelling of Toluidine Blue (TB) removal from aqueous solution using Lemna minor. Int J Phytoremediation. 2018;20(10):1049–1054. doi:10.1080/15226514.2018.1460304.
  • Isiuku BO, Ibe FC. Removal of metanil yellow by batch biosorption from aqueous phase on egg membrane: equilibrium and isotherm studies. Anal Methods Environ Chem J. 2019;2:15–26.
  • Aksu Z, Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manag. 2001;21(8):695–702. doi:10.1016/s0956-053x(01)00006-x.
  • Tan I, Ahmad A, Hameed B. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 2009;164:473–482.
  • Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898;24(4):1–39.
  • Ho YS, McKay G. Pseudo-second order model for sorption processes. Proc Biochem. 1999;34(5):451–465. doi:10.1016/S0032-9592(98)00112-5.
  • Weber WJ, Rumer RR. Intraparticle transport of sulphonated alkylbenzenes in a porous solid: diffusion and non-linear adsorption. Water Resour Res. 1965;1(3):361–365. doi:10.1029/WR001i003p00361.
  • Keskinkan O, Goksu MZL, Basibuyuk M, et al. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol. 2004;92(2):197–200. doi:10.1016/j.biortech.2003.07.011.
  • Hamdaouia O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Twoparameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater. 2007;147(1–2):381–394. doi:10.1016/j.jhazmat.2007.01.021.
  • Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev. 1960;60(2):235–241. doi:10.1021/cr60204a006.
  • Nagy B, Maicaneanu A, Indolean C, et al. Cadmium (II) ions removal from aqueous solutions using Romanian untreated fir tree sawdust–a green biosorbent. Acta Chim Slov. 2013;60(2):263–273.
  • El-henday ANA. Surface and adsorptive properties of carbons prepared from biomass. Appl Surf Sci. 2005;252:287–295.
  • Kuleyin A. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. J Hazard Mater. 2007;144(1-2):307–315. doi:10.1016/j.jhazmat.2006.10.036.
  • Wang SL, Tzou YM, Lu YH, et al. Removal of 3-chlorophenol from water using rice-straw-based carbon. J Hazard Mater. 2007;147(1-2):313–318. doi:10.1016/j.jhazmat.2007.01.031.
  • Radhika M, Palanivelu K. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—kinetics and isotherm analysis. J Hazard Mater. 2006;138(1):116–124. doi:10.1016/j.jhazmat.2006.05.045.
  • Calace N, Nardi E, Petronio BM, et al. Adsorption of phenols by papermill sludges. Environ Poll. 2002;118:315–319.
  • Namasivayam C, Kavitha D. Adsorptive removal of 2,4-dichlorophenol from aqueous solution by low-cost carbon from an agricultural solid waste: coconut coir pith. Sep Sci Technol. 2005;39(6):1407–1425.
  • Hameed BH, Chin LH, Rengaraj S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination. 2008;225(1-3):185–198. doi:10.1016/j.desal.2007.04.095.
  • Tan IAW, Ahmad AL, Hameed BH. Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J Hazard Mater. 2008;153(1-2):709–717. doi:10.1016/j.jhazmat.2007.09.014.
  • Mubarik S, Saeed A, Athar MM, et al. Characterization and mechanism of the adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane baggase. J Ind Eng Chem. 2016;33:115–121.
  • Jaycock MJ, Parfitt GD. Chemistry of interfaces. Berichte der Bunsengesellschaft für physikalische Chemie. Chichester: Ellis Horwood Limited Publishers; 1981, 279. doi: 10.1002/bbpc.19810850925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.