142
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Fenton-biostimulation sequential treatment of a petroleum-contaminated soil amended with oil palm bagasse (Elaeis guineensis)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 573-588 | Received 08 Sep 2020, Accepted 23 Mar 2021, Published online: 13 Apr 2021

References

  • Oil Tanker Spill Statistics 2019-ITOPF. (2020). Special Edition; Available at https://www.itopf.org/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_brochure_2020_for_web.pdf.
  • Mexicanos (Pemex) P. (2020). Estadísticas petroleras. [Oil stadistics].Subdirección de programación y coordinación operativa. Gerencia de análisis de la información institucional; 2020. Available at https://www.pemex.com/ri/Publicaciones/Indicadores&per;20Petroleros/indicador.pdf.
  • Secretaría del Medio Ambiente y Recursos Naturales SEMARNAT. 2018. Programa Nacional de Remediación de Sitios Contaminados. [National program for remediation of contaminated sites] (PNRSC); 2018. Available at https://www.gob.mx/cms/uploads/attachment/file/387622/Programa_Nacional_Remediacion_Sitios_Contaminados.pdf
  • Benavides-López de Mesa J, Quintero G, Guevara A, et al. Biorremediación de suelos contaminados con hidrocarburos derivados del petróleo. Nova. 2006;4(5):82–90. Available at https://www.redalyc.org/pdf/411/41140509.pdf.
  • Díaz-Ramírez I, Escalante-Espinosa E, Adams-Schroeder R, et al. Hydrocarbon biodegradation potential of native and exogenous microbial inocula in mexican tropical soils. In: Biodegradation of Hazardous and Special Products. INTECHOPEN. 2013; Chapter 8. 155–178. doi: 10.5772/56233.
  • Swift MJ, Anderson JM. Biodiversity and Ecosystem Function in Agricultural systems. In: Schulze ED, Mooney HA, editors. Biodiversity and Ecosystem Function. Praktische zahnmedizin odonto-stomatologie pratique practical dental medicine (geology). 1994;99:15-41. Springer, Berlin. DOI: 10.1007/978-3-642-58001-7_2
  • Volke T, Velasco JA. Tecnologías de remediación para suelos contaminados. México [Remediation technologies for contaminated soils. Mexico] INE-SEMARNAT; 2002. Available at http://www.ecopuerto.com/Bicentenario/informes/TecnologiasRemediacion.pdf.
  • Adams GO, Fufeyin PT, Okoro SE, et al. Bioremediation, biostimulation and bioaugmention: A review. Int J Environ Bioremed Biodegrad. 2015;3(1):28–39. DOI: 10.12691/ijebb-3-1-5.
  • Deshmukh R, Khardenavis AA, Purohit HJ. Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol. 2016;56(3):247–264. DOI: 10.1007/s12088-016-0584-6.
  • Lu M, Zhang Z, Qiao W, et al. Removal of residual contaminants in petroleum-contaminated soil by fenton-like oxidation. J. Hazard Mater. 2010;179:604–611. DOI: 10.1016/j.jhazmat.2010.03.046.
  • Yap CY, Gan S, Ng HN. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere. 2011;83:1414–1430. DOI:10.1016/j.chemosphere.2011.01.026.
  • Liu Y, Zeng G, Zhong H, et al. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? J Hazard Mater. 2017;322:394–401. DOI: 10.1016/j.jhazmat.2016.10.025.
  • Liu Y, Cheng M, Liu Z, et al. Heterogeneous fenton-like catalyst for treatment of rhamnolipid-solubilized hexadecane wastewater. Chemosphere. 2019;236:1–9DOI:10.1016/j.chemosphere.2019.124387.
  • Ouriache H, Arrar J, Namane A, et al. Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation. Chemosphere. 2019;232:277–386. DOI: 10.1016/j.chemosphere.2019.05.060.
  • Cheng M, Liu Y, Huang D, et al. Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values. Chem. Eng. J. 2019;362:865–876. DOI: 10.1016/j.cej.2019.01.101.
  • Lu M, Zhang Z, Qiao W, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with fenton-like oxidation and biodegradation. Biores Technol. 2010;101:2106–2113. DOI:10.1016/j.biortech.2009.11.002.
  • Liu M-H, Hsiao C-M, Wang Y-S. et al. Tandem modified Fenton oxidation and bioremediation to degrade lubricant-contaminated soil. Int Biodeter Biodegr. 2019;143:1–8DOI:10.1016/j.ibiod.2019.104738.
  • Buragohain S, Deka DC, Devi A. Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in assam-India. Environ Sci-Proc Imp. 2013;15:1913–1920. DOI: 10.1039/c3em00170a.
  • Olawale O, Obayomi KS, Dahunsi SO, et al. Bioremediation of artificially contaminated soil with petroleum using animal waste: cow and poultry dung. Cogent Engineering 2020;7(1):1–15DOI:10.1080/23311916.2020.1721409.
  • Ali N, Dashti N, Khanafer M. et al. Bioremediation of soils saturated with spilled crude oil. Sci Rep 2020;10:1–91116. DOI:10.1038/s41598-019-57224-x.
  • Xu J, Du J, Li L, etal Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation. Chemosphere. 2020;252:1–10. DOI:10.1016/j.chemosphere.2020.126622.
  • Gligorovski S, Strekowski R, Barbati S, et al. Environmental implications of hydroxyl radicals (OH). Chem Rev. 2015;115(24):13051–13092. DOI: 10.1021/cr500310b.
  • Usman M, Ho, Y.S. A bibliometric study of the Fenton oxidation for soil and water remediation. J Environ Manage. 2020;270:1–10. DOI:10.1016/j.jenvman.2020.110886.
  • Chaudhary DK, Kim J. New insights into bioremediation strategies for oil-contaminated soil in cold environments. Int Biodeter Biodegr. 2019;142:58–72. DOI: 10.1016/j.ibiod.2019.05.001.
  • Nnaji ND, Ughamba KT, Aduba CC, et al. Potato skin: A potential biostimulating agent for used motor oil biodegraders. Int J Environ Agric Biotech. 2020;5(2):296–309. DOI: 10.22161/ijeab.52.6.
  • Ren X, Zeng G, Tang L, et al. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Manag. 2018;72:138–149. DOI: 10.1016/j.wasman.2017.11.032.
  • García-Torres R, Ríos-Leal E, Martínez-Toledo A, et al. Uso de cachaza y bagazo de caña de azúcar en la remoción de hidrocarburos en suelo contaminado. Rev Int Contam Ambient. 2011;27(1):31–39. Available at http://www.scielo.org.mx/pdf/rica/v27n1/v27n1a3.pdf.
  • Cuevas-Díaz MdC, Martínez-Toledo Á, Guzmán-López O, et al. Catalase and phosphatase activities during hydrocarbon removal from oil-contaminated soil amended with agro-industrial by-products and macronutrients. Water Air Soil Pollut. 2017;228:1–11. DOI:10.1007/s11270-017-3336-2.
  • Mata GB. Palma de aceite en México [Oil Palm in Mexico]. Política gubernamental e innovación tecnológica. Honorable Cámara de Diputados LXII Legislatura. México; 2014; p. 49–52 Available at http://biblioteca.diputados.gob.mx/janium/bv/cedrssa/lxii/pal_ace_mex.pdf.
  • Hernández-Rojas DA, López-Barrera F, Bonilla-Moheno M. Análisis preliminar de la dinámica de uso del suelo asociada al cultivo palma de aceite (Elaeis guineensis) en méxico. Agrociencia. 2018;52:875–893. Available at http://www.scielo.org.mx/pdf/agro/v52n6/2521-9766-agro-52-06-875-en.pdf.
  • Van Dam J. Subproductos de la palma de aceite como materias primas de biomasa [Oil palm By-Products as biomass commodities]. Palmas. 2016;37:49–156. Available at http://web.fedepalma.org/sites/default/files/files/Fedepalma/Memorias&per;20de&per;20la&per;20XVIII&per;20Conferencia&per;20Internacional&per;20sobre&per;20Palma&per;20de&per;20aceite/M_2_15_&per;20Subproductos&per;20de&per;20la&per;20palma.pdf.
  • Montejo MM, Torres LCP, Martínez TA, et al. Técnicas para el análisis de actividad enzimática en suelos. In: Cuevas MdC, Espinosa RG, Ilizaliturri HCA, etal, editors. Métodos ecotoxicológicos para la evaluación de suelos contaminados con hidrocarburos. 1st ed., México: Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Instituto Nacional de Ecología (INE); 2012; p.19–41.
  • Margesin R, Walder G, Schinner F. The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol. 2000;20:313–333. DOI: 10.1002/abio.370200312.
  • Karigar CS, Rao SS. Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Res. 2011;7:1–11. DOI:10.4061/2011/805187.
  • Wu B, Lan T, Lu D, et al. Ecological and enzymatic responses to petroleum contamination. Environ Sci-Proc Imp. 2014;16:1501–1509. DOI: 10.1039/c3em00731f.
  • Margesin R, Zimmerbauer A, Schinner F. Soil lipase activity – a useful indicator of oil biodegradation. Biotechnol Tech. 1999;13(12):859–863. DOI: 10.1023/A:1008928308695.
  • Riffaldi R, Levi MR, Cardelli R, et al. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut. 2006;170(1):3–15. DOI: 10.1007/s11270-006-6328-1.
  • Ríos VC, Curbalo D, Falto L, et al. (2008). Deshidrogenasas. Departamento de Biología. Universidad de Puerto Rico, Recinto Universitario de Magagüez. Puerto Rico.
  • Henríquez C, Uribe L, Valenciano A, et al. Actividad enzimática del suelo -deshidrogenasa, glucosidasa, fosfatasa y ureasa- bajo diferentes cultivos. Agron Costarric. 2014;38(1):43–54. Available at https://www.scielo.sa.cr/pdf/ac/v38n1/a03v38n1.pdf.
  • Moeskops B, Buchan D, Sleutel S, et al. Soil microbial communities and activities under intensive organic and conventional vegetable farming in west java, Indonesia. Appl Soil Ecol. 2010;45:112–120. DOI: 10.1016/j.apsoil.2010.03.005.
  • Ortíz-Maya J, Escalante-Espinosa E, Fócil-Monterrubio RL, et al. Dinámica de poblaciones bacterianas y actividad deshidrogenasa durante la biorremediación de suelo recién contaminado e intemperizado con hidrocarburos. Rev Int Contam Ambient. 2017;33(2):237–246. DOI: 10.20937/RICA.2017.33.02.05.
  • Smith KA, Mullins CE. Soil and environmental analysis: Physical methods. 2nd ed. New York: Marcel Dekker; 2001. p. 8–10.
  • Jones JJB. Laboratory guide for conducting soil tests and plant analysis. Florida: CRC Press LLC; 2001. p. 31–35, 149–160.
  • Combs SM, Nathan MVColumbia: Agricultural Experiment Stations of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Pennsylvania, South Dakota and Wisconsin, and the U.S. Department of Agriculture cooperating; 2010. p. 53–58. Soil organic matter. In: Brown JR, editor. Recommended chemical soil test procedures of the north central region. Chapter 12. Missouri Agricultural experiment station SB 1001.
  • Diario Oficial de la Federación, DOF. Norma Oficial Mexicana (NOM-021-SEMARNAT-2000) Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, muestreo y análisis. [Official Mexican Standard, which fixed the fertility, salinity and soil classification. Study, sampling and analyses] Mexico; 2002 Available at http://dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002.
  • Muñoz-Iniestra DJ, Mendoza-Cantú A, López-Galindo F, et al. (2000). Manual de métodos de análisis de suelos. UNAM. México.
  • U.S. EPA Environmental Protection Agency. Method 3570 (SW 846). Microscale solvent extraction (MSE). Revision 0. Washington, D.C; 2002 Available at http://www.epa.gov/SW-846/pdfs/3570.pdf.
  • Diario Oficial de la Federación, DOF. Norma Oficial Mexicana (NMX-AA-134-SCFI-2006). Suelos-hidrocarburos fracción pesada por extracción y gravimetría-método de prueba [Heavy fraction of Soils-Hydrocarbons by extraction and assay gravimetric test] México; 2006 Available at http://104.209.210.233/gobmx/repositorio/FRACCION_I/NMX134SCFI2006IDROCARBUROSPESADO.pdf.
  • Casida LE, Klein DA, Santoro T. Soil dehydrogenase activity. Soil Sci. 1964;98:371–376. DOI: 10.1097/00010694-196412000-00004.
  • Margesin R, Feller G, Hämmerle M, et al. A colorimetric method for the determination of lipase activity in soil. Biotechnol Lett. 2002;24:27–33. DOI: 10.1023/A:1013801131553.
  • Clark EF, et al. Agar-plate methods for total microbial count. In: Page AL, editor. Methods of soil analysis. Madison: American Society of Agronomy; 1982. p. 1460–1466.
  • Liao X, Wu Z, Li Y, et al. Enhanced degradation of polycyclic aromatic hydrocarbons by indigenous microbes combined with chemical oxidation. Chemosphere. 2018;213:551–558. DOI: 10.1016/j.chemosphere.2018.09.092.
  • Forján R, Lores I, Sierra C, et al. Bioaugmentation treatment of a PAH-polluted soil in a slurry bioreactor. Appl. Sci. 2020;10(8):1–17DOI:10.3390/app10082837.
  • Du J, Xu J, Wang H, et al. Enhanced biodegradation of long-chain alkanes in soils using matching Fenton pre-oxidation. Soil Sediment Contam. 2020;29(1):120–131. DOI: 10.1080/15320383.2019.1693964.
  • Venny, Gan S, Ng HK. Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post-treatment. Sci Total Environ. 2012;419:240–249. DOI: 10.1016/j.scitotenv.2011.12.053.
  • Gómez SE, Gutiérrez DC, Hernández AM. Factores bióticos y abióticos que condicionan la biorremediación por pseudomonas en suelos contaminados por hidrocarburos. Nova. 2008;6(9):76–84. DOI: 10.22490/24629448.398.
  • Bendouz M, Dionne J, Tran LH, et al. Polycyclic aromatic hydrocarbon oxidation from concentrates issued from an attrition process of polluted soil using the Fenton reagent and permanganate. Water Air Soil Pollut. 2017;228:1–14. DOI:10.1007/s11270-017-3292-x.
  • Nam K, Rodriguez W, Kukor JJ. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere. 2001;45(1):11–20. DOI: 10.1016/s0045-6535(01)00051-0.
  • Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP, editor. Enzymes in the environment: activity, Ecology and applications. New York: Marcel Dekker; 2001. p. 1–10.
  • Imam A, Suman SK, Ghosh D, et al. Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. Trends Anal Chem. 2019;118:50–64. DOI: 10.1016/j.trac.2019.05.023.
  • Nakamura K, Kanno T, Mokudai T, et al. Microbial resistance in relation to catalase activity to oxidative stress induced by photolysis of hydrogen peroxide. Microbiol Immunol. 2012;56:48–55. DOI: 10.1111/j.1348-0421.2011.00400.x.
  • Valderrama C, Alessandri R, Aunola T, et al. Oxidation by fenton's reagent combined with biological treatment applied to a creosote-contaminated soil. J Hazard Mater. 2009;166:594–602. DOI: 10.1016/j.jhazmat.2008.11.108.
  • Sutton NB, Langenhoff AAM, Lasso DH, et al. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils. Appl Microbiol Biotechnol. 2014;39(6):2751–2764. DOI: 10.1007/s00253-013-5256-4.
  • Chen K, Chang Y, Chiou W. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study. J Chem Technol Biot. 2016;91:1877–1888. DOI: 10.1002/jctb.4781.
  • Varjani S, Upasani VN. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J. Environ. Management. 2019;245:358–366. DOI: 10.1016/j.jenvman.2019.05.070.
  • Polli F, Zingaretti D, Crognale S, et al. Impact of the fenton-like treatment on the microbial community of a diesel-contaminated soil. Chemosphere. 2018;191:580–588. DOI: 10.1016/j.Chemosphere. 2017.10.081.
  • Madigan MT, Martinko JM, Brock PJ. Biología de los microorganismos (p. 589–595, 10th ed.). España: Pearson Prentice Hall; 2004.
  • Alkorta I, Aizpurua A, Riga P, et al. Soil enzyme activities as biological indicators of soil health. Rev Environ Health. 2013;18(1):65–73. DOI: 10.1515/REVEH.2003.18.1.65.
  • Dawson JC, Godsiffe EJ, Thompson IP, et al. Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem. 2007;39:164–177. DOI: 10.1016/j.soilbio.2006.06.020.
  • Maila PM, Cloete TE. The use of biological activities to monitor the removal of fuel contaminants—perspective for monitoring hydrocarbon contamination: a review. Int Biodeter Biodegr. 2005;55:1–8. DOI: 10.1016/j.ibiod.2004.10.003.
  • Riveroll-Larios J, Escalante-Espinosa E, Fócil-Monterrubio RL, et al. Biological activity assessment in Mexican tropical soils with different hydrocarbon contamination histories. Water air Soil Pollut. 2015;226:1–15. DOI:10.1007/s11270-015-2621-1.
  • Mora VC, Morelli SC, Rosso JA. Co-treatment of an oily sludge and aged contaminated soil: permanganate oxidation followed by bioremediation. J Environ Manage. 2020;261:1–9. DOI:10.1016/j.jenvman.2020.110169.
  • Ebulue MM, Uwakwe AA, Wegwu MO. Soil lipase and dehidrogenases activities in spent engine oil polluted ecosystem. J Bio Innov. 2017;6(5):782–789. Available at https://www.jbino.com/docs/Issue05_15_2017.pdf.
  • Kumar S, Chaudhuri S, Maiti SK. Soil dehydrogenase enzyme activity in natural and mine soil - a review. Middle-East J Sci Res. 2013;13:898–906. DOI: 10.5829/idosi.mejsr.2013.13.7.2801.
  • Wolińska A, Stępniewska Z. Dehydrogenase activity in the soil environment. In: Canuto RA, editor. Intechopen. London: InTech ; 2012. p. 183–210. DOI:10.5772/48294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.