365
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Diversity of algal species present in waste stabilisation ponds and different factors affecting its enrichment and phototaxis

ORCID Icon, , , ORCID Icon, &
Pages 515-529 | Received 23 May 2020, Accepted 24 Mar 2021, Published online: 20 Apr 2021

References

  • Kumar D, Asolekar SR Significance of natural treatment systems to enhance reuse of treated effluent: A critical assessment. Ecological Engineering. 2016 Sep 1;94:225-37.
  • Hosetti B, Frost S. A review of the control of biological waste treatment in stabilization ponds. Crit Rev Environ Sci Technol. 1998;28(2):193–218.
  • Oswald WJ. Metropolitan wastes and algal nutrition. Algae Metropol Wastes Trans. 1961;18(3):88-95.
  • Kent R, Belitz K, Burton CA. Algal productivity and nitrate assimilation in an effluent dominated concrete lined stream. J Amer Water Resour Assoc. 2005;41(5):1109–1128.
  • Shanthala M, Hosmani SP, Basaling BH. Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka State, India. Environ Monit Assess. 2009;151(1–4):437–443.
  • Woertz I, Feffer A, Lundquist T, et al. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng. 2009;135(11):1115–1122.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev. 2010;14(1):217–232.
  • Maity JP, Bundschuh J, Chen CY, et al. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy. 2014;78:104–113.
  • Stockenreiter M, Graber AK, Haupt F, et al. The effect of species diversity on lipid production by micro-algal communities. J Appl Phycol. 2012;24(1):45–54.
  • Stockenreiter M, Haupt F, Seppala J, et al. Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater. Algal Res. 2016;15:77–82.
  • Liu J. Interspecific biodiversity enhances biomass and lipid productivity of microalgae as biofuel feedstock. J Appl Phycol. 2016;28(1):25–33.
  • Thomas PK, Dunn GP, Coats ER, et al. Algal diversity and traits predict biomass yield and grazing resistance in wastewater cultivation. J Appl Phycol. 2019;31(4):2323–2334.
  • Juneja A, Ceballos RM, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 2013;6(9):4607–4638.
  • Mochiji S, Wakabayashi KI. Redox regulation of phototactic migration in the green alga Chlamydomonas reinhardtii and its possible application. Commun Integr Biol. 2012;5(2):196–198.
  • Fistarol GO, Hargreaves PI, Walter JM, et al. Rapid isolation of culturable microalgae from a tropical shallow lake system. J Appl Phycol. 2018;30(3):1807–1819.
  • Lin W, Jogler C, Schüler D, et al. Metagenomic analysis reveals unexpected subgenomic diversity of magnetotactic bacteria within the phylum nitrospirae. Appl Environ Microbiol. 2011;77(1):323–326.
  • Carney LT, Reinsch SS, Lane PD, et al. Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res. 2014;4:52–61.
  • Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–1624.
  • Bartram AK, Lynch MD, Stearns JC, et al. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol. 2011;77(11):3846–3852.
  • Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci USA. 2006;103(32):12115–12120.
  • Dunthorn M, Klier J, Bunge J, et al. Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J Eukaryot Microbiol. 2012;59(2):185–187.
  • Ghosh S, Love NG. Application of rbcL based molecular diversity analysis to algae in wastewater treatment plants. Bioresour Technol. 2011;102(3):3619–3622.
  • Sutherland LD, Turnbull MH, Craggs JR. Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds. Water Res. 2017; 124:504–512.
  • Cho D-H, Ramanan R, Heo J, et al. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour Technol. 2015;191:481–487.
  • Ramachandra TV, Madhab MD, Shilpi S, et al. Algal biofuel from urban wastewater in India: scope and challenges. Renew Sustain Energ Rev. 2013;21:767–777.
  • Bradley IM, Sevillano-Rivera MC, Pinto AJ, et al. Impact of solids residence time on community structure and nutrient dynamics of mixed phototrophic wastewater treatment systems. Water Res. 2019;150:271–282.
  • Sarkar S, Lahiri S, Ghosh D, et al. Ecological processes-driven distribution of net-algal diversity and carbon sequestration potential across the sewage effluent gradient of stabilization pond system. Ecol Hydrobiol. 2019;19:464–472.
  • Agrawal SC, Sarma YSRK. Effects of nutrients present in bold’s basal medium on the green alga Stigeoclonium pascheri. Folia Microbiol. (Praha). 1982;27(2):131–137.
  • Powell N, Shilton A, Pratt S, et al. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Sci Technol. 2011;63(4):704–709.
  • Renuka N, Sood A, Prasanna R, et al. Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol. 2015;12(4):1443–1460.
  • Amangual-Morro C, Niell GM, Martínez-Taberner A. Phytoplankton as bioindicator for waste stabilization ponds. J Environ Manage. 2012;95:S71–S76.
  • Cho HU, Kim YM, Park JM. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresour Technol. 2017;228:290–297.
  • Thomas PK, Dunn GP, Good AR, et al. A natural algal polyculture outperforms an assembled polyculture in wastewater-based open pond biofuel production. Algal Res. 2019;40:p101488-495
  • Breuer F, Janz P, Farrelly E, et al. Environmental and structural factors influencing algal communities in small streams and ditches in central Germany. J Freshw Ecol. 2017;32(1):65–83.
  • Choudhary SK, Baskaran A, Sharma P. Reentrant efficiency of phototaxis in Chlamydomonas reinhardtii cells. Biophys J. 2019;117(8):1508–1513.
  • Feinleib ME, Curry GM. The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas. Physiol Plant. 1971;25:346–352.
  • Häder DP, Colombetti G, Lenci F, et al. Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch Microbiol. 1981;130:78–82.
  • Morita M, Watanabe Y, Saiki H. High photosynthetic productivity of green microalga Chlorella sorokiniana. Appl Biochem Biotechnol. 2000.Jun;87(3):203-18.
  • Arrieta J, Barreira A, Chioccioli M, et al. Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii. Sci Rep. 2017;7(1):1–7.
  • Kim GH, Yoon M, Klotchkova TA. A moving mat: phototaxis in the filamentous green algae spirogyra (chlorophyta, zygnemataceae) 1. J Phycol. 2005;41(2):232–237.
  • Shikata T, Matsunaga S, Iseki M, et al. Blue light regulates the rhythm of diurnal vertical migration in the raphidophyte red-tide alga Chattonella antiqua. J Plankton Res. 2013;35(3):542–552.
  • Wakabayashi KI, Misawa Y, Mochiji S, et al. Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 2011;108(27):11280–11284.
  • Ozasa K, Won J, Song S, et al. Phototaxis and photo-shock responses of Euglena gracilis under gravitaxis. Algal Res. 2019;Aug 1;41:101563-573.
  • Ozasa K, Won J, Song S, et al. Behavior of Euglena gracilis under simultaneous competing optical and chemical stimuli. Algal Res. 2018;35:98–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.