235
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the effects of metal oxide nanoparticle mixtures on Danio rerio and Xenopus laevis embryos

, ORCID Icon, , &
Pages 215-234 | Received 02 Sep 2022, Accepted 22 Dec 2022, Published online: 02 Jan 2023

References

  • Vaseem M, Umar A, Hahn YB. Zno nanoparticles: growth, properties, and applications. In: Umar A, Hahn Y-B, editor. Metal oxide nanostructures and their applications. Los Angeles: American Scientific Publishers; 2010. p. 1–36.
  • Ali SS, Al-Tohamy R, Koutra E, et al. Nanobiotechnological advancements in agriculture and food industry: applications, nanotoxicity, and future perspectives. Sci Total Environ. 2021 Oct 20;792:148359.
  • Zhang HY, Ji ZX, Xia T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano. 2012 May;6(5):4349–4368.
  • Klaine SJ, Alvarez PJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008 Sep;27(9):1825–1851.
  • Chaudhuri RG, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012 Apr;112(4):2373–2433.
  • Lopez ADF, Fabiani M, Lassalle VL, et al. Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Mar Pollut Bull. 2022 Jan;174:113276.
  • Liu W-S, Peng Y-H, Shiung C-E, et al. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension. J Nanopart Res. 2012/11/03;14(12):1259.
  • Seabra AB, Haddad PS. Cytotoxicity and genotoxicity of iron oxides nanoparticles. In: Durán N, Guterres SS, Alves OL, editor. Nanotoxicology-materials, methodologies, and assessments. New York (NY): Springer; 2014. p. 265–279.
  • Oliveira EMN, Selli GI, von Schmude A, et al. Developmental toxicity of iron oxide nanoparticles with different coatings in zebrafish larvae. J Nanopart Res. 2020 Apr 4;22(4).
  • Haynes VN, Ward JE, Russell BJ, et al. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms-current knowledge and suggestions for future research. Aquat Toxicol. 2017 Apr;185:138–148.
  • Hou J, Wang L, Wang C, et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China). 2019 Jan;75:40–53.
  • Li MT, Liu W, Slaveykova VI. Effects of mixtures of engineered nanoparticles and metallic pollutants on aquatic organisms. Environments. 2020 Apr;7(4):27. doi:10.3390/environments7040027.
  • Park C-B, Jung J-W, Baek M, et al. Mixture toxicity of metal oxide nanoparticles and silver ions on daphnia magna. J Nanopart Res. 2019/07/25;21(8):166.
  • Pikula K, Johari SA, Santos-Oliveira R, et al. Individual and binary mixture toxicity of five nanoparticles in marine microalga heterosigma akashiwo. Int J Mol Sci. 2022 Jan 17;23(2):990. doi:10.3390/ijms23020990.
  • Lee SLJ, Lin S. Advancements in a zebrafish model for toxicity assessment of nanomaterials. In: Guo L-H, Mortimer M, editor. Advances in toxicology and risk assessment of nanomaterials and emerging contaminants. Singapore: Springer; 2022. p. 95–140.
  • Wheelock CE, Phillips BM, Anderson BS, et al. Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev Environ Contam Toxicol. 2008;195:117–178.
  • Rajput VD H, Singh RK, et al. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology-Basel. 2021 Apr;10(4):267. doi:10.3390/biology10040267.
  • Bacchetta R, Santo N, Fascio U, et al. Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology. 2012 Jun;6(4):381–398.
  • Szabo DV, Schlabach S. Microwave plasma synthesis of materials—from physics and chemistry to nanoparticles: a materials scientist’s viewpoint. Inorganics. 2014;2:468–507.
  • Lin D, Drew Story S, Walker SL, et al. Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Res. 2016 Nov 01;104:381–388.
  • Westerfield M. The zebrafish book, 5th edition; a guide for the laboratory use of zebrafish (Danio rerio). Eugene (Oregon): University of Oregon Press; 2007.
  • ASTM. American society for testing and materials, standard guide for conducting the frog embryo teragonesis assay-Xenopus (FETAX), E1439-98. In: ASTM standards on biological effects and environmental fate. Vol. 11.05. Philadelphia (PA): American National Standards Institute; 2003. p. 447–457.
  • Birhanli A, Ozmen M. Evaluation of the toxicity and teratogenity of six commercial textile dyes using the frog embryo teratogenesis assay-Xenopus. Drug Chem Toxicol. 2005;28(1):51–65.
  • Kimmel CB, Ballard WW, Kimmel SR, et al. Stages of embryonic-development of the zebrafish. Dev Dyn. 1995 Jul;203(3):253–310.
  • Nagel R, Dar T. The embryo test with the zebrafish Danio rerio–a general model in ecotoxicology and toxicology. ALTEX. 2002;19 Suppl 1:38–48.
  • OECD. (2013). OECD guidelines for the testing of chemicals. Fish Embryo Acute Toxicity (FET) Test, no.236.
  • Al-Yousuf K, Webster CA, Wheeler GN, et al. Combining cytotoxicity assessment and Xenopus laevis phenotypic abnormality assay as a predictor of nanomaterial safety. Curr Protoc Toxicol. 2017 Aug 4;73:20 13 1–20 13 33.
  • Boran F, Gungordu A. Biochemical and developmental effects of thyroid and anti-thyroid drugs on different early life stages of Xenopus laevis. Environ Toxicol Pharmacol. 2021 Sep 4;87: 103738.
  • Bantle JA. FETAX-A developmental toxicity assay using frog embryos. In: Rand GM, editor. Fundamental aquatic toxicology. Washington, DC: Taylor and Francis; 1995. p. 207–230.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139.
  • Stephensen E, Svavarsson J, Sturve J, et al. Biochemical indicators of pollution exposure in shorthorn sculpin (myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquat Toxicol. 2000 Apr 01;48(4):431–442.
  • Santhoshkumar P, Shivanandappa T. In vitro sequestration of two organophosphorus homologs by the rat liver. Chem Biol Interact. 1999 May 14;119-120:277–282.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254.
  • USEPA. United States environmental protection agency,using toxicity tests in ecological risk assessment. Intermittent Bulletin. 1994;2(1):9345.0–93405I.
  • Weltje L, Simpson P, Gross M, et al. Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data. Environ Toxicol Chem. 2013 May;32(5):984–994.
  • Glaberman S, Kiwiet J, Aubee CB. Evaluating the role of fish as surrogates for amphibians in pesticide ecological risk assessment. Chemosphere. 2019 Nov;235:952–958.
  • Venturino A, Rosenbaum E, Caballero de Castro A, et al. Biomarkers of effect in toads and frogs. Biomarkers. 2003 May-Aug;8(3-4):167–186.
  • Blaustein AR, Dobson A. Extinctions: a message from the frogs. Nature. 2006 Jan 12;439(7073):143–144.
  • Pasmans F, Mutschmann F, Halliday T, et al. Amphibian decline: the urgent need for amphibian research in Europe. Vet J. 2006 Jan;171(1):18–19.
  • Xiong D, Fang T, Yu L, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ. 2011 Mar 15;409(8):1444–1452.
  • Zhu X, Tian S, Cai Z. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. 2012;7(9):e46286.
  • Azevedo SL, Ribeiro F, Jurkschat K, et al. Co-exposure of ZnO nanoparticles and UV radiation to daphnia magna and Danio rerio: combined effects rather than protection. Environ Toxicol Chem. 2016 Feb;35(2):458–467.
  • Nations SL. (2009). Acute and developmental toxicity of metal oxide nanoparticles (ZnO, TiO2, Fe2O3, and CuO) in Xenopus laevis [MSc Thesis]: Texas Tech University.
  • Choi JS, Kim RO, Yoon S, et al. Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): a transcriptomic analysis. PLoS One. 2016 Aug 9;11(8). doi:10.1371/journal.pone.0160763.
  • Leite C, Coppola F, Monteiro R, et al. Biochemical and histopathological impacts of rutile and anatase (TiO2 forms) in mytilus galloprovincialis. Sci Total Environ. 2020 Jun;1:719.
  • Xia J, Zhao HZ, Lu GH. Effects of selected metal oxide nanoparticles on multiple biomarkers in carassius auratus. Biomed Environ Sci. 2013 Sep;26(9):742–749.
  • Yu R, Wu JK, Liu MT, et al. Toxicity of binary mixtures of metal oxide nanoparticles to nitrosomonas europaea. Chemosphere. 2016 Jun;153:187–197.
  • Tong T, Wilke CM, Wu J, et al. Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ Sci Technol. 2015 Jul 7;49(13):8113–8123.
  • Tong T, Fang K, Thomas SA, et al. Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium. Environ Sci Technol. 2014 Jul 15;48(14):7924–7932.
  • Manuja A, Kumar B, Kumar R, et al. Metal/metal oxide nanoparticles: toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021;8:1970–1978.
  • Park MV, Neigh AM, Vermeulen JP, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011 Dec;32(36):9810–9817.
  • Lee WS, Kim E, Cho HJ, et al. The relationship between dissolution behavior and the toxicity of silver nanoparticles on zebrafish embryos in different ionic environments. Nanomaterials-Basel. 2018 Sep;8(9):652. doi:10.3390/nano8090652.
  • Zhu XS, Zhu L, Duan ZH, et al. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng. 2008;43(3):278–284.
  • Thirumurthi NA, Raghunath A, Balasubramanian S, et al. Evaluation of maghemite nanoparticles-induced developmental toxicity and oxidative stress in zebrafish embryos/larvae. Biol Trace Elem Res. 2022 May;200(5):2349–2364.
  • Hanke N, Staggs L, Schroder P, et al. “Zebrafishing” for novel genes relevant to the glomerular filtration barrier. Biomed Res Int. 2013;2013:658270.
  • Babalola OO, Truter JC, Van Wyk JH. Lethal and teratogenic impacts of imazapyr, diquat dibromide, and glufosinate ammonium herbicide formulations using frog embryo teratogenesis assay-Xenopus (FETAX). Arch Environ Con Tox. 2021 May;80(4):708–716.
  • Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020 Sep;18(5):1659–1683.
  • Bai CC, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol. 2020 Jan;40(1):37–63.
  • Czyzowska A, Barbasz A. A review: zinc oxide nanoparticles - friends or enemies? Int J Environ Heal R. 2022 Apr 3;32(4):885–901.
  • Davies WJ, Freeman SJ. Frog embryo teratogenesis assay xenopus (FETAX). In: O’Hare S, Atterwill CK, editor. Vitro toxicity testing protocols. methods in molecular biology™. Vol. 43. Totowa (NJ): Humana Press; 1995. p. 311–316.
  • Josko I, Oleszczuk P, Skwarek E. Toxicity of combined mixtures of nanoparticles to plants. J Hazard Mater. 2017 Jun 5;331:200–209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.