353
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Integrated multi-biomarker responses in Mozambique tilapia, Oreochromis mossambicus under acute and chronic Diazinon® exposures

, , , , , , , , , & show all
Pages 235-255 | Received 11 Sep 2022, Accepted 06 Feb 2023, Published online: 14 Feb 2023

References

  • Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011;8(5):1402–1419. doi:10.3390/ijerph8051402.
  • Chukwuka AV, Ogbeide O. Riparian-buffer loss and pesticide incidence in freshwater matrices of Ikpoba river (Nigeria): policy recommendations for the protection of tropical river basins. River Basin Manag: Sustain Issues Plan Strateg. 2021;113:113–139.
  • Vali S, Majidiyan N, Azadikhah D, et al. Effects of Diazinon on the survival, blood parameters, gills, and liver of grass carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water (Basel). 2022;14(9):1357.
  • Tresnakova N, Famulari S, Zicarelli G, et al. Multi-characteristic toxicity of enantioselective chiral fungicide tebuconazole to a model organism Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalve: Mytilidae). Sci Total Environ. 2022;862:160874.
  • Ogbeide O, Chukwuka A, Tongo I, et al. Relationship between geosorbent properties and field-based partition coefficients for pesticides in surface water and sediments of selected agrarian catchments: implications for risk assessment. J Environ Manag. 2018;217:23–1337. doi:10.1016/j.jenvman.2018.03.065.
  • Burgos Aceves MA, Migliaccio V, Lepretti M, et al. Dose-dependent response to the environmental pollutant Dichlorodipheniletylhene (DDE) in HepG2 cells: focus on cell viability and mitochondrial fusion/fission proteins. Toxics. 2021;9(11):270.
  • Brum A, Dotta G, Roumbedakis K, et al. Hematological and histopathological changes in silver catfish Rhamdia quelen (Siluriformes) exposed to clomazone herbicide in the Madre River, Santa Catarina State, Southern Brazil. Journal of Environmental Science and Health, Part B. 2014;49(3):169–175. doi:10.1080/03601234.2014.858007.
  • Radovanović TB, Gavrilović BR, Petrović TG, et al. Impact of desiccation pre-exposure on deltamethrin-induced oxidative stress in Bombina variegata juveniles. Comp Biochem Physiol C Toxicol Pharmacol. 2021;109191; doi:10.1016/j.cbpc.2021.109191.
  • Krewski D, Acosta DJ, Andersen M, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B: Crit Rev. 2010;13(2-4):51–138.
  • Sula E, Aliko V, Marku E, et al. Evaluation of kidney histopathological alterations in Crucian Carp, Carassius carassius, from a pesticide and PCB-contaminated freshwater ecosystem, using light microscopy and organ index mathematical model. Int J Aquat Biol. 2020;8(3):154–165.
  • Ogbeide O, Uhunamure G, Uwagboe L, et al. Comparative gill and liver pathology of Tilapia zilli, Clarias gariepinus and Neochanna diversus in owan river (Nigeria): relative ecological risks of species in a pesticide-impacted river. Chemosphere. 2019;234:1–13.
  • Stara A, Pagano M, Capillo G, et al. Assessing the effects of neonicotinoid insecticide on the bivalve mollusc Mytilus galloprovincialis. Sci Total Environ. 2020;700:134914.
  • Stara A, Pagano M, Capillo G, et al. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: a case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. Ecotoxicol Environ Saf. 2020;203:110980.
  • Sharma R, Jindal R, Faggio C. Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comp Biochem Physiol C Toxicol Pharmacol. 2021: 109113. doi:10.1016/j.cbpc.2021.109113.
  • Di Poi C, Costil K, Bouchart V, et al. Toxicity assessment of five emerging pollutants, alone and in binary or ternary mixtures, towards three aquatic organisms. Environ Sci Pollut Res. 2018;25(7):6122–136134.
  • Yalsuyi AM, Vajargah MF, Hajimoradloo A, et al. Evaluation of behavioral changes and tissue damages in common Carp (Cyprinus carpio) after exposure to the herbicide glyphosate. Vet Sci. 2021;8(10):218. doi:10.3390/vetsci8100218.
  • Vajargah MF, Namin JI, Mohsenpour R, et al. Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella). Vet Res Commun. 2021: 1–218. doi:10.1007/s11259-021-09818-y.
  • Merola C, Fabrello J, Matozzo V, et al. Dinitroaniline herbicide pendimethalin affects development and induces biochemical and histological alterations in zebrafish early-life stages. Sci Total Environ. 2022;828:154414.
  • Curpan A-S, Impellitteri F, Plavan G, et al. Mytilus galloprovincialis: an essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp Biochem Physiol C: Toxicol Pharmacol. 2022;256:109302.
  • Velisek J, Svobodova Z, Piackova V. Effects of acute exposure to bifenthrin on some haematological, biochemical and histopathological parameters of rainbow trout (Oncorhynchus mykiss). Vet Med. 2009;54(3):131–154137.
  • Saha S, Mukherjee D, Saha NC. Evaluation of acute toxicity and behavioral responses of Heteropneustes fossilis (Linn.) exposed to Captan. Int J Life Sci. 2018;6(1):205–208.
  • Dhara K, Shubhajit S, Chukwuka AV, et al. Behavioural toxicity and respiratory distress in early life and adult stage of walking catfish Clarias batrachus (Linnaeus) under acute fluoride exposures. Toxicol Environ Health Sci. 2021;14:1–14. doi:10.1007/s13530-021-00115-4.
  • Dhara K, Saha S, Panigrahi AK, et al. Sensitivity of the freshwater tropical oligochaete, Branchiura sowerbyi (Beddard, 1892) to the grey list metal, zinc. Int J Life Sci. 2020;8(1):93–101.
  • Saha S, Mukherjee D, Dhara K, et al. Captan-induced toxicity and behavioural alterations on oligochaete worm. Branchiura Sowerbyi. J Aquat Biol Fish. 2020;8:37–40.
  • Stara A, Kubec J, Zuskova E, et al. Effects of S-metolachlor and its degradation product metolachlor OA on marbled crayfish (Procambarus virginalis). Chemosphere. 2019;224:616–625.
  • Köprücü SŞ, Köprücü K, Ural MŞ, et al. Acute toxicity of organophosphorous pesticide diazinon and its effects on behavior and some hematological parameters of fingerling European catfish (Silurus glanis L.). Pestic Biochem Physiol. 2006;86(2):99–105. doi:10.1016/j.pestbp.2006.02.001.
  • Saha S, Chukwuka AV, Mukherjee D, et al. Chronic effects of Diazinon® exposures using integrated biomarker responses in freshwater walking catfish, clarias batrachus. Appl Sci. 2021;11(22):10902., doi:10.3390/app112210902.
  • Stara A, Bellinvia R, Velisek J, et al. Acute exposure of common yabby (Cherax destructor) to the neonicotinoid pesticide. Sci Total Environ. 2019;665:718–10723. doi:10.1016/j.scitotenv.2019.02.202.
  • Petrovici A, Strungaru S-A, Nicoara M, et al. Toxicity of deltamethrin to zebrafish gonads revealed by cellular biomarkers. J Mar Sci Eng. 2020;8(2):73. doi:10.3390/jmse8020073.
  • Kuivila KM, Foe CG. Concentrations, transport and biological effects of dormant spray pesticides in the San Francisco Estuary, California. Environ Toxicol Chem: Int J. 1995;14(7):1141–1150. doi:10.1002/etc.5620140704.
  • Sinha R, Jindal R, Faggio C. Nephroprotective effect of Emblica officinalis fruit extract against malachite green toxicity in piscine model: ultrastructure and oxidative stress study. Microsc Res Tech. 2021;84(8):1911–1919. doi:10.1002/jemt.23747.
  • Sinha R, Jindal R, Faggio C. Protective effect of Emblica officinalis in Cyprinus carpio against hepatotoxicity induced by malachite green: ultrastructural and molecular analysis. Appl Sci. 2021;11(8):3507. doi:10.3390/app11083507.
  • Sharma S, Iqbal Dar O, Andotra M, et al. Environmentally relevant concentrations of Triclosan induce cyto-genotoxicity and biochemical alterations in the hatchlings of Labeo rohita. Appl Sci. 2021;11(21):10478.
  • Sharma S, Dar OI, Singh K, et al. Triclosan elicited biochemical and transcriptomic alterations in labeo rohita larvae. Environ Toxicol Pharmacol. 2021: 103748. doi:10.1016/j.etap.2021.103748.
  • Sharma R, Jindal R, Faggio C. Impact of cypermethrin in nephrocytes of freshwater fish Catla catla. Environ Toxicol Pharmacol. 2021: 103739. doi:10.1016/j.etap.2021.103739.
  • Harris C, Chapman R, Miles J. Insecticide residues in soils on fifteen farms in southwestern Ontario, 1964–1974. J Environ Sci Health, B. 1977;12(3):163–3177. doi:10.1080/03601237709372062.
  • Miles J, Harris C. Insecticide residues in water, sediment, and fish of the drainage system of the Holland Marsh, Ontario, Canada, 1972–75. J Econ Entomol. 1978;71(1):125–131.
  • Burkepile D, Moore M, Holland M. Susceptibility of five nontarget organisms to aqueous diazinon exposure. Bull Environ Contam Toxicol. 2000;64(1):114–121.
  • Pesando D, Huitorel P, Dolcini V, et al. Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean sea urchin, Paracentrotus lividus. Mar Environ Res. 2003;55(1):39–57.
  • Dutta H, Meijer H. Sublethal effects of diazinon on the structure of the testis of bluegill, Lepomis macrochirus: a microscopic analysis. Environ Pollut. 2003;125(3):355–360. doi:10.1016/S0269-7491(03)00123-4.
  • Mukherjee D, Saha S, Chukwuka AV, et al. Antioxidant enzyme activity and pathophysiological responses in the freshwater walking catfish, Clarias batrachus Linn under sub-chronic and chronic exposures to the neonicotinoid, Thiamethoxam®. Sci Total Environ. 2022;836:155716.
  • Dutta HM, Arends DA. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environ Res. 2003;91(3):157–155162. doi:10.1016/S0013-9351(02)00062-2.
  • Aydın R, Köprücü K. Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic Biochem Physiol. 2005;82(3):220–225. doi:10.1016/j.pestbp.2005.03.001.
  • Dutta H, Munshi J, Dutta G, et al. Age related differences in the inhibition of brain acetylcholinesterase activity of Heteropneustes fossilis (Bloch) by malathion. Comp Bioch Physiol A: Mol Integr Physiol. 1995;111(2):331–334. doi:10.1016/0300-9629(94)00166-Q.
  • Hamm J, Hinton D. The role of development and duration of exposure to the embryotoxicity of diazinon. Aquat Toxicol. 2000;48(4):403–418. doi:10.1016/S0166-445X(99)00065-X.
  • Russell D, Thuesen P, Thomson F. A review of the biology, ecology, distribution and control of Mozambique tilapia, Oreochromis mossambicus (Peters 1852)(Pisces: Cichlidae) with particular emphasis on invasive Australian populations. Rev Fish Biol Fish. 2012;22(3):533–554.
  • Ganie MA, Bhat MD, Khan MI, et al. Invasion of the Mozambique tilapia, Oreochromis mossambicus (Pisces: Cichlidae; Peters, 1852) in the Yamuna river, Uttar Pradesh, India. J Ecol Nat Environ. 2013;5(10):310–317.
  • Roshni K, Renjithkumar C, Kurup M. Fishery of Mozambique Tilapia Oreochromis mossambicus (Peters) in Poringalkuthu Reservoir of Chalakudy River, Kerala, India. J Aquat Biol Fish. 2016;4:110–114.
  • Zeng L, Zhou L, Guo DL, et al. Ecological effects of dams, alien fish, and physiochemical environmental factors on homogeneity/heterogeneity of fish community in four tributaries of the pearl river in China. Ecol Evol. 2017;7(11):3904–3915. doi:10.1002/ece3.2920.
  • Banaee M, Sureda A, Mirvaghefi A, et al. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol. 2011;99(1):1–6.
  • Alishahi M, Mohammadi A, Mesbah M, et al. Haemato-immunological responses to diazinon chronic toxicity in Barbus sharpeyi. Iran J Fish Sci. 2016;15:870–885.
  • Ezemonye L, Ikpesu T, Tongo I. Distribution of diazinon in water, sediment and fish from Warri river, Niger delta, Nigeria. Jordan J Biol Sci. 2008;1(2):77–83.
  • Paul T, Kumar S, Shukla S, et al. A multi-biomarker approach using integrated biomarker response to assess the effect of pH on triclosan toxicity in Pangasianodon hypophthalmus (Sauvage, 1878). Environ Pollut. 2020;260:114001.
  • Skelton. A complete guide to the freshwater fishes of Southern Africa halfway house, South Africa. Cape Town: Southern Book Publishers; 1993.
  • APHA. Standard methods for the examination of water and wastewater. Washington: American Public Health Association; 2012.
  • Finney D. Statistical logic in the monitoring of reactions to therapeutic drugs. Methods Inf Med. 1971;10(04):237–114245. doi:10.1055/s-0038-1636052.
  • USEPA IRIS. Integrated risk information system. Environmental protection agency region I. Washington DC: National Academic Press. 2011; 20460.
  • Gomez KA, Gomez AA. Statistical procedures for agricultural research. Washington DC: John Wiley & Sons; 1984.
  • Pal GK. Textbook of practical physiology. New Delhi: Orient Blackswan; 2006.
  • Haider MJ, Rauf A. Sub-lethal effects of diazinon on hematological indices and blood biochemical parameters in Indian carp, Cirrhinus mrigala (Hamilton). Braz Arch Biol Technol. 2014;57:947–20953.
  • Rambhaskar B, Srinivasa Rao K. Comparative haematology of ten species of marine fish from Visakhapatnam Coast. J Fish Biol. 1987;30(1):59–66. doi:10.1111/j.1095-8649.1987.tb05732.x.
  • Özok N, OĞuz AR, Kankaya E, et al. Hemato-biochemical responses of Van fish (Alburnus tarichi Guldenstadt, 1814) during sublethal exposure to cypermethrin. Hum Ecol Risk Assess: Int J. 2018;24(8):2240–2246. doi:10.1080/10807039.2018.1443389.
  • Samajdar I, Mandal DK. Acute toxicity and impact of an organophosphate pesticide, chlorpyrifos on some haematological parameters of an Indian minor carp, Labeo bata (Hamilton 1822). Int J Environ Sci. 2015;6(1):106–113. doi:10.6088/ijes.6012.
  • Nelson DA, Morris MWJCD. Methods MBL. basic methodology. In: Nelson DA, Henry JB, editors. Clinical diagnosis, management by laboratory methods. 1. Philadelphia: W.B. Saunder Company; 1979. p. 858–917.
  • Saravanan T, Rajesh P, Sundaramoorthy M. Studies on effects of chronic exposure of endosulfan to Labeo rohita. J Environ Biol. 2010;31(5):755.
  • El-Sayed YS, Saad TT, El-Bahr SM. Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ Toxicol Pharmacol. 2007;24(3):212–217. doi:10.1016/j.etap.2007.05.006.
  • Chernecky CC, Berger BJ. Laboratory tests & diagnostic procedures. New York: WB Saunders Company; 2004.
  • Casanovas P, Walker SP, Johnston H, et al. Comparative assessment of blood biochemistry and haematology normal ranges between Chinook salmon (Oncorhynchus tshawytscha) from seawater and freshwater farms. Aquaculture. 2021;537:736464. doi:10.1016/j.aquaculture.2021.736464.
  • Brigham ME, VanderMeulen DD, Eagles-Smith CA, et al. Long-term trends in regional wet mercury deposition and lacustrine mercury concentrations in four lakes in Voyageurs national park. Appl Sci. 2021;11(4):1879.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–736275.
  • Waterborg JH. The Lowry method for protein quantitation. The protein protocols handbook. Totowa (NJ): Springer; 2009; p. 7–10.
  • Beliaeff B, Burgeot T. Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem: Int J. 2002;21(6):1316–1322. doi:10.1002/etc.5620210629.
  • Samanta P, Im H, Na J, et al. Ecological risk assessment of a contaminated stream using multi-level integrated biomarker response in Carassius auratus. Environ Pollut. 2018;233:429–438. doi:10.1016/j.envpol.2017.10.061.
  • Hagger JA, Jones MB, Lowe D, et al. Application of biomarkers for improving risk assessments of chemicals under the water framework directive: a case study. Mar Pollut Bull. 2008;56(6):1111–1118. doi:10.1016/j.marpolbul.2008.03.040.
  • Li X, Wang M, Chen W, et al. Evaluation of combined toxicity of Siduron and cadmium on earthworm (Eisenia fetida) using biomarker response index. Sci Total Environ. 2019;646:893–901. doi:10.1016/j.scitotenv.2018.07.380.
  • Javed M, Ahmad I, Usmani N, et al. Studies on biomarkers of oxidative stress and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere. 2016;151:210–219. doi:10.1016/j.chemosphere.2016.02.080.
  • Jiao W, Han Q, Xu Y, et al. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: through oxidative stress and apoptosis. Fish Shellfish Immunol. 2019;86:239–245. doi:10.1016/j.fsi.2018.08.060.
  • Javed M, Ahmad I, Usmani N, et al. Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent. Ecotoxicol Environ Saf. 2016;127:163–169. doi:10.1016/j.ecoenv.2016.01.007.
  • Shamoushaki MMN, Soltani M, Kamali A, et al. Effects of organophosphate, diazinon on some haematological and biochemical changes in Rutilus frisii kutum (Kamensky, 1901) male brood stocks. Iran J Fish Sci. 2012;11(1):105–117.
  • Keizer J, D'Agostino G, Vittozzi LJAT. The importance of biotransformation in the toxicity of xenobiotics to fish. I. Toxicity and bioaccumulation of diazinon in guppy (Poecilia reticulata) and zebra fish (Brachydanio rerio). Aquat. Toxicol. 1991;21(3-4):239–254.
  • Girón-Pérez MI, Santerre A, Gonzalez-Jaime F, et al. Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish Shellfish Immunol. 2007;23(4):760–769.
  • Rauf A, Arain N. Acute toxicity of diazinon and its effects on hematological parameters in the Indian carp, Cirrhinus mrigala (Hamilton). Turk J Vet Anim Sci. 2013;37(5):535–540. doi:10.3906/vet-1212-39.
  • Ahmad Z. Acute toxicity and haematological changes in common carp (Cyprinus carpio) caused by diazinon exposure. Afr J Biotechnol. 2011;10(63):13852–13859.
  • Benarji G, Rajendranath T. Haematological changes induced by an organophosphorus insecticide in a freshwater fish Clarias batrachus(Linnaeus). Trop Freshw Biol. 1990;2(2):197–202.
  • Nwani CD, Ivoke N, Ugwu DO, et al. Investigation on acute toxicity and behavioral changes in a freshwater African catfish, Clarias gariepinus (Burchell, 1822), exposed to organophosphorous pesticide, Termifos®. Pak J Zool. 2013;45(4):959–965.
  • Mostakim G, Zahangir M, Monir Mishu M, et al. Alteration of blood parameters and histoarchitecture of liver and kidney of silver barb after chronic exposure to quinalphos. J Toxicol. 2015;2015; doi:10.1155/2015/415984.
  • Sula E, Aliko V, Barceló D, et al. Combined effects of moderate hypoxia, pesticides and PCBs upon crucian carp fish, Carassius carassius, from a freshwater lake-in situ ecophysiological approach. Aquat Toxicol. 2020;228:105644. doi:10.1016/j.aquatox.2020.105644.
  • Hodkovicova N, Hollerova A, Svobodova Z, et al. EFFECTS OF PLASTIC PARTICLES ON AQUATIC INVERTEBRATES AND FISH–A REVIEW. Environ Toxicol Pharmacol. 2022;13–29.
  • Tavares-Dias M, Martins ML, Kronka SDN. Evaluation of the haematological parameters in Piaractus mesopotamicus Holmberg (Osteichthyes, Characidae) with Argulus sp.(Crustacea, Branchiura) infestation and treatment with organophosphate. Rev Bras Zool. 1999;16:553–105555. doi:10.1590/S0101-81751999000200019.
  • Morgan DP, Stockdale EM, Roberts RJ, et al. Anemia associated with exposure to lindane. Arch Environ Health: Int J. 1980;35(5):307–310.
  • Rauch AE, Kowalsky SF, Lesar TS, et al. Lindane (Kwell)-induced aplastic anemia. Arch Intern Med. 1990;150(11):2393–2395. doi:10.1001/archinte.1990.00390220125026.
  • Shahjahan M, Taslima K, Rahman MS, et al. Effects of heavy metals on fish physiology–A review. Chemosphere. 2022;14–30.
  • Barathinivas A, Ramya S, Neethirajan K, et al. Ecotoxicological effects of pesticides on hematological parameters and oxidative enzymes in freshwater Catfish. Mystus keletius. Sustainability. 2022;14(15):9529.
  • Seibel H, Baßmann B, Rebl A. Blood will tell: what hematological analyses can reveal about fish welfare. Front Vet Sci. 2021;194:1–21.
  • Chatterjee S, Basak P, Chaklader M, et al. Pesticide induced alterations in marrow physiology and depletion of stem and stromal progenitor population: an experimental model to study the toxic effects of pesticide. Environ Toxicol. 2014;29(1):84–9597. doi:10.1002/tox.20775.
  • Pourgholam R, Hassan M, Kakoolaki S, et al. Some hematological and biochemical changes in blood serum of Grass carp (Ctenopharyngodon idella) vaccinated with Aeromonas hydrophila following exposure to sublethal concentration of diazinon. Iran J Fish Sci. 2013;12(1):12–23.
  • Inyang I, Daka E, Ogamba E. Changes in electrolyte activities of Clarias gariepinus exposed to diazinon. Biol Environ Sci J Trop. 2010;17:198–200.
  • Soyingbe A, Ogunyanwo O, Hammed T, et al. Effects of sublethal concentrations of diazinon on total protein in tilapia fish (Oreochromis niloticus). IOSR J Environ Sci Toxicol Food Technol. 2012;1(1):22–25.
  • Das B, Mukherjee S. Sublethal effect of quinalphos on selected blood parameters of Labeo rohita(Ham.) fingerlings. Asian Fish Sci. 2000;13(3):225–233.
  • Gokcimen A, Gulle K, Demirin H, et al. Effects of diazinon at different doses on rat liver and pancreas tissues. Pestic Biochem Physiol. 2007;87(2):103–108.
  • Nayak S, Dash SN, Pati SS, et al. Lipid peroxidation and antioxidant levels in Anabas testudineus (Bloch) under naphthalene (PAH) stress. Aquac Res. 2021;. doi:10.1111/are.15450.
  • Dhara K, Saha S, Pal P, et al. Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the freshwater snail, Bellamya bengalensis. Comparative Biochem Physiol C: Toxicol Pharmacol. 2021: 109195. doi:10.1016/j.cbpc.2021.109195.
  • Serafim A, Company R, Lopes B, et al. Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecol Indic. 2012;19:215–109225. doi:10.1016/j.ecolind.2011.08.009.
  • Saha S, Dhara K, Pal P, et al. Longer-term adverse effects of selenate exposures on hematological and serum biochemical variables in air-breathing fish Channa punctata (Bloch, 1973) and non-air breathing fish Ctenopharyngodon Idella (Cuvier, 1844): an integrated biomarker response approach. Biol Trace Elem Res. 2022: 1–16.
  • Parolini M, Pedriali A, Binelli AJ. Toxicology. Application of a biomarker response index for ranking the toxicity of five pharmaceutical and personal care products (PPCPs) to the bivalve Dreissena polymorpha. Arch. Environ. Contam. Toxicol. 2013;64(3):439–447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.