48
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of Graphene oxide on cadmium concentration in maize plant: implications for contaminant uptake and remediation strategies

Pages 571-595 | Received 09 Aug 2023, Accepted 22 Mar 2024, Published online: 28 Mar 2024

References

  • Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization. Nat Nanotech. 2014;9:730–734. doi: 10.1038/nnano.2014.225
  • Novoselov KS, Fal'ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490(7419):192–200. doi: 10.1038/nature11458
  • Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotech. 2008;3:270–274. doi: 10.1038/nnano.2008.83
  • Zhang L, Xia J, Zhao Q, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537–544. doi: 10.1002/smll.200901680
  • Hegab HM, Zou L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Membr Sci. 2015;484:95–106. doi: 10.1016/j.memsci.2015.03.011
  • Sun H, Liu S, Zhou G, et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl Mater Interfaces. 2012;4(10):5466–5471. doi: 10.1021/am301372d
  • Wang Y, Gao S, Zang X, et al. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Anal Chim Acta. 2012;716:112–118. doi: 10.1016/j.aca.2011.12.007
  • Zhao J, Cao X, Wang Z, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res. 2017;111:18–27. doi: 10.1016/j.watres.2016.12.037
  • Rassaei F, Hoodaji M, Abtahi SA. Zinc and incubation time effect on cadmium chemical fractions in two types of calcareous soil. Agrochimica. 2019;63(4):337–349. doi: 10.12871/00021857201943.
  • Rassaei F, Hoodaji M, Abtahi SA. Cadmium chemical forms in two calcareous soils treated with different levels of incubation time and moisture regimes. J Environ Prot. 2019;10(4):500–513. doi: 10.4236/jep.2019.104029
  • Rassaei F, Hoodaji M, Abtahi SA. Fractionation and mobility of cadmium and zinc in calcareous soils of Fars Province, Iran. Arab J Geosci. 2020;13:1097. doi: 10.1007/s12517-020-06123-x
  • Rassaei F, Hoodaji M, Abtahi SA. Cadmium speciation as influenced by soil water content and zinc and the studies of kinetic modeling in two soils textural classes. Int Soil Water Conserv Res. 2020;8(3):286–294. doi: 10.1016/j.iswcr.2020.05.003
  • Rassaei F. The effect of sugarcane bagasse biochar on maize growth factors in lead and cadmium-polluted soils. Commun Soil Sci Plant Anal. 2023;54(10):1426–1446. doi: 10.1080/00103624.2022.2146704
  • Rassaei F. Effect of monocalcium phosphate on the concentration of cadmium chemical fractions in two calcareous soils in Iran. Soil Sci Annu. 2022;73(2):152586. doi: 10.37501/soilsa/152586
  • Rassaei F. Kinetics,: isotherms, thermodynamic adsorption, and desorption studies of chromium in two types of calcareous soils. Arab J Geosci. 2023;16:214. doi: 10.1007/s12517-023-11291-7
  • Rassaei F. Sugarcane bagasse biochar changes the sorption kinetics and rice (Oryza sativa L.) cadmium uptake in a paddy soil. Gesunde Pflanzen. 2023;75:2101–2110. doi: 10.1007/s10343-023-00860-1
  • Rassaei F, Hoodaji M, Abtahi SA. Adsorption kinetic and cadmium fractions in two calcareous soils affected by zinc and different moisture regimes. Paddy Water Environ. 2020;18:595–606. doi: 10.1007/s10333-020-00804-9
  • Rassaei F. Rice yield and carbon dioxide emissions in a paddy soil: a comparison of biochar and polystyrene microplastics. Environ Prog Sustain Energy. 2023:e14217. doi: 10.1002/ep.142
  • Rassaei F. Sugarcane bagasse biochar affects corn (Zea mays L.) growth in cadmium and lead-contaminated calcareous clay soil. Arab J Geosci. 2023;16:181. doi: 10.1007/s12517-023-11225-3
  • Rassaei F. Effect of two different sources of organic amendments on soil characteristics and chemical forms of cadmium. Agrochimica. 2022;66(4):277–293. doi: 10.12871/00021857202244
  • Rassaei F. Adsorption kinetics and isotherm modeling of lead in calcareous soils: insights into thermodynamics,: desorption, and soil properties. Commun Soil Sci Plant Anal. 2023;54(15):2059–2076. doi: 10.1080/00103624.2023.2211116
  • Diatta J, Kocialkowski W. Adsorption of zinc in some selected soils. Pol J Environ Stud. 1998;7(4):195–200.
  • McBride MB. Reactions controlling heavy metal solubility in soils. In: Stewart BA, editor. Advances in soil science, vol 10. New York: Springer-Verlag; 1989. p. 1–56. doi: 10.1007/978-1-4613-8847-0_1
  • Rassaei F, Hoodaji M, Abtahi SA. Cadmium fractions in two calcareous soils affected by incubation time,: zinc and moisture regime. Commun Soil Sci Plant Anal. 2020;51(4):456–467. doi: 10.1080/001036
  • Andelkovic IB, et al. Graphene oxide-Fe(III) composite containing phosphate—a novel slow release fertilizer for improved agriculture management. J Clean Prod. 2018;185:97–104. doi: 10.1016/j.jclepro.2018.03.050
  • He YJ, Qian L, Xu L, et al. Graphene oxide as an antimicrobial agent can extend the vase life of cut fowers. Nano Res. 2028;11:6010–6022.
  • He YJ, Hu R, Zhong Y, et al. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018;11:1928–1937. doi: 10.1007/s12274-017-1810-1
  • Kabiri S, Degryse F, Tran DNH, et al. Graphene oxide: a new carrier for slow release of plant micronutrients. ACS Appl Mater Inter. 2017;9:43325–43335. doi: 10.1021/acsami.7b07890
  • Zhang M, Gao B, Chen JJ, et al. Efects of graphene on seed germination and seedling growth. J Nanopart Res. 2025;17(78).
  • Rassaei F. Exploring the potential of fucoxanthin treatment to alleviate microplastic pollution effects on maize growth. Soil Sed Contam Int J. 2023;18:1–30. doi: 10.1080/15320383.2023.2258413
  • Rassaei F. Impact of polystyrene microplastics on cadmium uptake in corn (Zea mays L.) in a cadmium-contaminated calcareous soil. Environ Prog Sustain Energy. 2024;43(1):e14230. doi: 10.1002/ep.14230
  • Rassaei F. EDDS and polystyrene interactions: implications for soil health and management practices. Int J Phytoremediation. 2024;26(4):504–523. doi: 10.1080/15226514.2023.2250464
  • Rassaei F. Effect of different acidic phosphorus agents on the cadmium chemical fractions in calcareous soil. Arab J Geosci. 2021;14(21):1–8. doi: 10.1007/s12517-021-08594-y
  • Rassaei F. Biochar effects on rice paddy cadmium contaminated calcareous clay soil: a study on adsorption kinetics and cadmium uptake. Paddy Water Environ. 2023;21:389–400. doi: 10.1007/s10333-023-00937-7
  • IUSS Working Group WRB. World reference base for soil resources 2014,: update 2015. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, Rome. 2015.
  • Allen SE, Grinshaw HM, Parkinson JA, et al. Chemical methods for analyzing ecological materials. London: Oxford Blackwell Scientific Publications; 1974. p. 565.
  • Gee GW, Bauder JW. Particle-size analysis. In Klute A, editor., 2nd ed. Methods of soil analysis, part 1. Physical and mineralogical methods. Madison, WI: ASA, SSSA; 1986. p. 383–411.
  • Richards LA. Diagnosis and Improvement of Saline and Alkali Soils. United States Salinity Laboratory, Washington. 160 p. USDA. Agriculture Handbook, 1969; 60.
  • Gupta PK. Soil,: plant, water and fertilizer analysis. New Dehli: Agrobios; 2000.
  • Nelson DW, Sommers LE. Total carbon, organic carbon and organic matter. In Page AL, et al. editor. Methods of soil analysis. Madison, WI: ASA, SSSA; 1982, p. 539–579.
  • Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc,: iron, manganese and copper. Soil Sci Soc Am J. 1978;42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x
  • Ren Y, Yan N, Feng J. Adsorption mechanism of copper and lead ions onto graphene nanosheet/d-MnO2. Mater Chem Phys. 2012;136:538. doi: 10.1016/j.matchemphys.2012.07.023
  • Zhan WW, Gao L, Fu X. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Appl Surf Sci. 2018;467:1122–1133. doi: 10.1016/j.apsusc.2018.10.248
  • Wang S, Liu Y, Wang X, et al. Effects of concentration-dependent graphene on maize seedling development and soil nutrients. Sci Rep. 2023;13:2650. doi: 10.1038/s41598-023-29725-3
  • Shah GM, Ali H, Ahmad I, et al. Nano agrochemical zinc oxide influences microbial activity,: carbon, and nitrogen cycling of applied manures in the soil-plant system. Environ Pollut. 2022;293:118559. doi: 10.1016/j.envpol.2021.118559
  • Zhao FL, Xin X, Cao Y, et al. Use of carbon nanoparticles to improve soil fertility,: crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials. 2021;11:2717.
  • Guo X, Zhao JG, Wen RY, et al. Effects of graphene on root morphology and biomass of quinoa seedlings. J Shanxi Agric Sci. 2019;47:1395–1398.
  • Shahid M, Dumat C, Khalid S, et al. Cadmium bioavailability,: uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol. 2016;241:73–137.
  • Esmaeilzadeh M, Karbassi A, Bastami KD. Antioxidant response to metal pollution in phragmites australis from anzali wetland. Mar Pollut Bull. 2017;119(1):376–380. doi: 10.1016/j.marpolbul.2017.03.030
  • Kovačević M, Jovanović Ž, Andrejić G, et al. Effects of high metal concentrations on antioxidative system in phragmites australis grown in mine and flotation tailings ponds. Plant Soil. 2020;453(1):297–312. doi: 10.1007/s11104-020-04598-x
  • Jaisi DP, Saleh NB, Blake RE, et al. Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol. 2008;42:8317–8323. doi: 10.1021/es801641v
  • Lin JJ, Ma KY, Chen HH, et al. Influence of different types of nanomaterials on soil enzyme activity: A global meta-analysis. Nano Today. 2022;42:101345. doi: 10.1016/j.nantod.2021.101345
  • Rassaei F. Nitrous oxide emissions from rice paddy: impacts of rice straw and water management. Environ Prog Sustain Energy. 2023;42(4):e14066. doi: 10.1002/ep.14066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.