29
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Food-web construction and ecological effects of implementing non-traditional biomanipulation in eutrophic reservoirs in North-central China

, ORCID Icon, &
Pages 678-696 | Received 20 Dec 2023, Accepted 22 Apr 2024, Published online: 12 May 2024

References

  • Khan FA, Ansari AA. Eutrophication: an ecological vision. Bot Rev. 2005;71:449–482. doi:10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2
  • Taipale SJ, Vuorio K, Aalto SL, et al. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Environ Res. 2019;179:108836. doi:10.1016/j.envres.2019.108836
  • Glibert PM. Eutrophication, harmful algae and biodiversity — Challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull. 2017;124:591–606. doi:10.1016/j.marpolbul.2017.04.027
  • Kelly DJ, Schallenberg M. Assessing food web structure in relation to nutrient enrichment, macrophyte collapse and lake resilience in shallow lowland lakes. N Z J Mar Freshw Res. 2019;53:403–619. doi:10.1080/00288330.2019.1606021
  • Cameron EK, Sundqvist MK, Keith SA, et al. Uneven global distribution of food web studies under climate change. Ecosphere. 2019;10:e02645. doi:10.1002/ecs2.2645
  • Ryser R, Hirt MR, Häussler J, et al. Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects. Nat Commun. 2021;12:4716. doi:10.1038/s41467-021-24877-0
  • Rippel TM, Tomasula J, Murphy SM, et al. Global change in marine coastal habitats impacts insect populations and communities. Curr Opin Insect Sci. 2021;47:1–6. doi:10.1016/j.cois.2021.02.010
  • Xu DL, Cai Y, Jiang H, et al. Variations of food web structure and energy availability of shallow lake with long-term eutrophication: a case study from Lake Taihu, China. Clean Soil Air Water. 2016;44:1306–1314. doi:10.1002/clen.201300837
  • Eero M, Dierking J, Humborg C, et al. Use of food web knowledge in environmental conservation and management of living resources in the Baltic Sea. ICES J Mar Sci. 2021;78:2645–2663. doi:10.1093/icesjms/fsab145
  • Krause-Jensen D, Markager S, Dalsgaard T. Benthic and pelagic primary production in different nutrient regimes. Estuaries Coasts. 2012;35:527–545. doi:10.1007/s12237-011-9443-1
  • Li YK, Zhang YY, Xu J, et al. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake. J Oceanol Limnol. 2018;36:385–394. doi:10.1007/s00343-017-6225-z
  • Becheruccia ME, Alvarezb MF, Iribarne O, et al. Eutrophication in a semi-desert coastal ecosystem promotes increases in N and C isotopic signatures and changes in primary sources. Mar Environ Res. 2019;146:71–79. doi:10.1016/j.marenvres.2019.03.004
  • Xu DL, Wang Y, Liu D, et al. Spatial heterogeneity of food web structure in a large shallow eutrophic lake (Lake Taihu, China): implications for eutrophication process and management. J Freshw Ecol. 2019;34:229–245. doi:10.1080/02705060.2019.1581101
  • Zhang Y, Ding S, Bentsen CN, et al. Differences in stream fish assemblages subjected to different levels of anthropogenic pressure in the Taizi River catchment, China. Ichthyol Res. 2015;62:450–462. doi:10.1007/s10228-015-0459-6
  • Shapiro J, Lamarra V, Lynch M. Biomanipulation: an ecosystem approach to lake restoration. Proc Sympos Water. 1975;21:85–96.
  • Sushchik NN, Gladyshev MI, Makhutova ON, et al. Associating particulate essential fatty acids of the ω3 family with phytoplankton species composition in a Siberian reservoir. Freshw Biol. 2004;4:1206–1219. doi:10.1111/j.1365-2427.2004.01263.x
  • Xie P, Liu JK. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms. Sci World. 2001;1:337–356. doi:10.1100/tsw.2001.67
  • Hu ZJ, Zhang JW, Zhang Z, et al. Effect of silver carp (Hypophthalmichthys molitrix) stocking density on phytoplankton community structure in ponds along Qiandao Lake. J Hydroecol. 2021;42:57–63. doi:10.15928/j.1674-3075.201905050110
  • Wang SB, Qu YF, Xu ZR. Algal bloom control in eutrophic lakes and reservoirs based on biomanipulation. Water Resour Protect. 2016;32:1–4.  + 23. (In Chinese).
  • Chen J, Liu JR, Han SP, et al. Nontraditional biomanipulation: a powerful ecotechnology to combat cyanobacterial blooms in eutrophic freshwaters. Innov Life. 2023;1:100038. doi:10.59717/j.xinn-life.2023.100038
  • Zhao DF, Ren L, Ren KC, et al. Differences in the structure of food webs inside and outside the ecological stocking area of silver carp and bighead carp in the Meiliang Bay. J Fish Sci China. 2022;29:1601–1611. (In Chinese).
  • Cai XW, Li W, Fan HR, et al. Roles of fish assemblage regulation on ecological restoration in a shallow lake: A case study from the Kuilei Lake, China. J Fish Sci China. 2021;28:737–742. doi:10.12264/JFSC2021-0012
  • Peng GG, Zhou XJ, Xie B, et al. Ecosystem stability and water quality improvement in a eutrophic shallow lake via long-term integrated biomanipulation in Southeast China. Ecol Eng. 2021;2021(159):106119. doi:10.1016/j.ecoleng.2020.106119
  • Fei SH. One case of output decreasing for transplanted silvefish in Zhangze Reservoir. Shanxi Hydrotech. 2003;04:95–96. (In Chinese).
  • Deng Y, Zheng YC, Chang JB. Evaluation of the effect of stocking silver carp and bighead carp on the ecosystem of Qiandao Lake using Ecopath model. Acta Ecol Sin. 2022;42:6853–6862. doi:10.5846/stxb202011102906
  • Yang RJ, Feng MQ. Correlation between phytoplankton index of biotic integrity and eutrophication—a case study of Zhangze Reservoir. J Eng Heilongjiang Univ. 2021;12:198–208. doi:10.13524/j.2095-008x.2021.03.053
  • Xu J, Zhang M, Xie P. Sympatric variability of isotopic baselines influences modeling of fish trophic patterns. Limnology. 2011;12:107–115. doi:10.1007/s10201-010-0327-z
  • Kazanidis G, Bourgeois S, Witte UFM. On the effects of acid pre-treatment on the elemental and isotopic composition of lightly- and heavily-calcified marine invertebrates. Ocean Sci J. 2019;54:257–270. doi:10.1007/s12601-019-0014-x
  • Abrantes K, Sheaves M. Food web structure in a near-pristine mangrove area of the Australian Wet Tropics, Estuarine. Coastal Shelf Sci. 2009;82:597–607. doi:10.1016/j.ecss.2009.02.021
  • Mao ZG, Gu XH, Cao Y, et al. Pelagic energy flow supports the food web of a shallow lake following a dramatic regime shift driven by water level changes. Sci Total Environ. 2021;756:143642. doi:10.1016/j.scitotenv.2020.143642
  • Xu J, Wang YY, Wang K, et al. Protocols for sample collection, pretreatment and preservation of aquatic organisms in stable isotope ecology. Acta Hydrobiol Sin. 2020;44:989–997. doi:10.7541/2020.114
  • Post DM, Layman CA, Arrington DA, et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analysis. Oecologia. 2007;152:179–189. doi:10.1007/s00442-006-0630-x
  • Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83:703–718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  • Parnell AC, Inger R, Bearhop S, et al. Source partitioning using stable isotopes: coping with too much variation. PLoS One. 2010;5(3):e9672. doi:10.1371/journal.pone.0009672
  • Donald LP, Paul LK. Incorporating concentration dependence in stable isotope mixing models. Oecologia. 2002;130:114–125. doi:10.1007/s004420100786
  • Xing MY, Wang Q, Li XC, et al. Selection of keystone species based on stable carbon and nitrogen isotopes to construct a typical food web on the shore of Xingkai Lake, China. Ecol Indic. 2021;132:108263. doi:10.1016/j.ecolind.2021.108263
  • Ma XL, Liu CZ, Liu LS, et al. Study on the food web of fish in Baiyangdian Lake based diet analysis. J Hydroecol. 2011;32:85–90. doi:10.15928/j.1674-3075.2011.04.020
  • Tang FJ, Liu W, Wang JL, et al. Diet composition and transition of clearhead icefish (Protosalanx hyalocranius) in Lake Xingkai. Zool Res. 2013;34:493–498. doi:10.11813/j.issn.0254-5853.2013.5.0493
  • Smith JA, Mazumder D, Suthers IM, et al. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol Evol. 2013;4:612–618. doi:10.1111/2041-210X.12048
  • Li XX, Yang W, Sun T, et al. Assessment of energy flows and system attributes of seagrass bed in Yellow River estuary wetland. Acta Ecol Sin. 2021;41:3816–3825. doi:10.5846/stxb202007221914
  • Martinetto P, Teichberg M, Valiela I. Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Waquoit Bay, Massachusetts, USA. Mar Ecol Prog Ser. 2006;307:37–48. doi:10.3354/meps307037
  • Fry B. Conservative mixing of stable isotopes across estuarine salinity gradients: a conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries. 2002;25:264–271. doi:10.1007/BF02691313
  • Yang L, Zhang M, Wei J, et al. Pollution load estimation and control countermeasures of Zhangze Reservoir. Front Environ Sci. 2022;10:874124. doi:10.3389/fenvs.2022.874124
  • Liang H, Huang LP, Chen GJ, et al. Patterns of carbon and nitrogen stable isotopes and elemental composition of lake primary producers and zooplankton in Eastern Yunnan. J Lake Sci. 2018;30:1400–1412. doi:10.18307/2018.0521
  • Winemiller KO, Hoeinghaus DJ, Pease AA, et al. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Res Appl. 2011;27:791–803. doi:10.1002/rra.1396
  • Yang L, Zhang M, Wei J, et al. Pollution load estimation and control countermeasures of Zhangze Reservoir. Front Environ Sci. 2022;10:874124. doi:10.3389/fenvs.2022.874124
  • Vanderklift MA, Ponsard S. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia. 2003;136:169–182. doi:10.1007/s00442-003-1270-z
  • Xie Q, Xu QQ, Wang YM, et al. Stable isotope value and trophic position of fishes in Three Gorges Reservoir and Changshou Reservoir. J Lake Sci. 2019;31:837–845. doi:10.18307/2019.0321
  • Layman CA, Araujo MS, Boucek R, et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev Camb Philos Soc. 2011;87:545–562. doi:10.1111/j.1469-185X.2011.00208.x
  • Cui LJ, Jiang ZJ, Huang XP, et al. Decade changes of the food web structure in tropical seagrass meadow: implication of eutrophication effects. Mar Pollut Bull. 2021;173:113122. doi:10.1016/j.marpolbul.2021.113122
  • Liu DY, Chen G, Li YC, et al. Global pattern of carbon stable isotopes of suspended particulate organic matter in lakes. Limnology. 2012;13:253–260. doi:10.1007/s10201-011-0371-3
  • Cremona F, Timm H, Agasild H, et al. Benthic foodweb structure in a large shallow lake studied by stable isotope analysis. Freshwater Sci. 2014;33:885–894. doi:10.1086/677540
  • Que YF, Xie JY, Xu J, et al. Influences of water-level fluctuation on food web network. Water (Basel). 2021;13:2371. doi:10.3390/w13172371
  • Liu RX, Chang HL, Ren JH, et al. Nutrient type evaluation and comprehensive prevention countermeasures of water body in Zhangze Reservoir. Environ Sustain Develop. 2009;34:46–49. doi:10.19758/j.cnki.issn1673-288x.2009.02.019
  • Ni D, Chiang S. On food of silver carp and bighead carp. Acta Zool Sin. 1954;6:59–71. (In Chinese).
  • Lin QQ, Liao Y, Xia Q, et al. Body size mediates the trophic cascade effect of filter-feeding fish [Hypophthalmichthys molitrix (Val.)] on phytoplankton in large enclosures. Hydrobiologia. 2022;849:4707–4724. doi:10.1007/S10750-022-05009-1
  • Januszko M. The effect of three species of phytophagous on algae development. Pol Arch Hydrobiol 1974;21:431–454.
  • Liu JK, Xie P. Direct control of microcystis bloom through the use of Planktivorous Carp- chosure Experiments and Lake Fishery Practice. Ecol Sci. 2003;22:193–196. (In Chinese).
  • Wang LQ, Xu L, Chen QJ, et al. Stocking levels effects of silver and bighead carps on the phytoplankton community in enclosures in Dianshan Lake. Chinese J Environ Eng. 2011;5:1790–1794. (In Chinese).
  • Cremer MC, Smitherman RO. Food habits and growth of silver and bighead carp in cages and ponds. Aquaculture. 1980;20:57–64. doi:10.1016/0044-8486(80)90061-7
  • Spataru P, Wohlfarth GW, Hulata G. Studies on the natural food of different fish species in intensively manured polyculture ponds. Aquaculture. 1983;35:283–298. doi:10.1016/0044-8486(83)90101-1
  • Hu CJ. Characteristics of zooplankton community and its water quality evaluation of Zhangze Reservoir in Spring and Summer. Shanxi Hydrotech. 2018;04:89–92. (In Chinese).
  • Chen ZQ, Zhao D, Li ML, et al. A field study on the effects of combined biomanipulation on the water quality of a eutrophic lake. Environ Pollut. 2020;265:115091. doi:10.1016/j.envpol.2020.115091
  • Tang FJ, Liu W, Wang JL, et al. On the occurrence of the clearhead icefish, Protosalanx hyaloranius (Salmoniformes: Salangidae), in the Songhua River, the largest tributary of Amur River. J Appl Ichthyol. 2013;29:237–238. doi:10.1111/j.1439-0426.2012.02050.x
  • Hansson LA, Annadotter H, Bergman E, et al. Biomanipulation as an Application of Food-Chain Theory: Constraints, Synthesis, and Recommendations for Temperate Lakes. Ecosystems. 1998;1:558–574. doi:10.1007/s100219900051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.