52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of river tide dynamics on phytoplankton variability and its ecological implications in three Brazilian tropical estuaries (Delta do Parnaíba Environmental Protection Area)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 769-795 | Received 20 Nov 2023, Accepted 25 Apr 2024, Published online: 15 May 2024

References

  • Wang X, Lu Y, Han J, et al. Identification of anthropogenic influences on water quality of rivers in Taihu watershed. J Env Sci. 2007;19:475–481. doi: 10.1016/S1001-0742(07)60080-1
  • Mukate S, Panaskar D, Wagh V, et al. Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Ground Sustain Develop. 2018;7:359–371. doi: 10.1016/j.gsd.2017.11.001
  • Mainali J, Chang H. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea. J Hydrol. 2018;564:26–40. doi: 10.1016/j.jhydrol.2018.06.074
  • Zhou Y, Wang L, Zhou Y, et al. Eutrophication control strategies for highly anthropogenic influenced coastal waters. Sci Total Environ. 2020;705:135760. doi: 10.1016/j.scitotenv.2019.135760
  • Gobler CJ, Cullison LA, Koch F, et al. Influence of freshwater flow, ocean exchange, and seasonal cycles on phytoplankton – nutrient dynamics in a temporarily open estuary. Estuar Coast Shelf Sci. 2005;65:275–288. doi: 10.1016/j.ecss.2005.05.016
  • Torregroza-Espinosa AC, Restrep JC, Escobar J, et al. Nutrient inputs and net ecosystem productivity in the mouth of the Magdalena River, Colombia. Estuar Coast Shelf Sci. 2020;243:106899. doi: 10.1016/j.ecss.2020.106899
  • Qu Y, Wu N, Guse B, et al. Distinct indicators of land use and hydrology characterize different aspects of riverine phytoplankton communities. Sci Total Environ. 2022;851:158209. doi: 10.1016/j.scitotenv.2022.158209
  • Zhao K, Wang L, You Q, et al. Impact of cyanobacterial bloom intensity on plankton ecosystem functioning measured by eukaryotic phytoplankton and zooplankton indicators. Ecol Indic. 2022;140:109028. doi: 10.1016/j.ecolind.2022.109028
  • Karydis M, Tsirtsis G. Ecological indices: a biometric approach for assessing eutrophication levels in the marine environment. Sci Total Environ. 1996;186:209–219. doi: 10.1016/0048-9697(96)05114-5
  • Balci M, Balkis N. Assessment of phytoplankton and environmental variables for water quality and trophic state classification in the Gemlik Gulf, Marmara Sea (Turkey). Mar Pollut Bull. 2017;115:172–189. doi: 10.1016/j.marpolbul.2016.12.007
  • Cutrim MVJ, Ferreira FS, Duarte dos Santos AK, et al. Trophic state of an urban coastal lagoon (northern Brazil), seasonal variation of the phytoplankton community and environmental variables. Estuar Coast Shelf Sci. 2019;216:98–109. doi: 10.1016/j.ecss.2018.08.013
  • Vollenweider RA, Giovanardi F, Montanari G, et al. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics. 1998;9:329–357. doi: 10.1002/(SICI)1099-095X(199805/06)9:3<329::AID-ENV308>3.0.CO;2-9
  • Carlson RE. A trophic state index for lakes1. Limnol Oceanogr. 1977;22(2):361–369. doi: 10.4319/lo.1977.22.2.0361
  • Salas F, Teixeira H, Marcos C, et al. Applicability of the trophic index TRIX in two transitional ecosystems: the Mar Menor lagoon (Spain) and the Mondego estuary (Portugal). ICES J Mar Sci. 2008;65:1442–1448. doi: 10.1093/icesjms/fsn123
  • Anguiano-Cuevas JR, Olivos-Ortiz A, Cervantes O, et al. The potential for young citizen scientist projects: a case study of Chilean schoolchildren collecting data on marine litter. J Int Coast Zone Manag. 2014;14:569–579. doi: 10.5894/rgci507
  • Brugnoli E, Muniz P, Venturini N, et al. Assessing multimetric trophic state variability during an ENSO event in a large estuary (Río de la Plata, South America). Reg Stud Mar Sci. 2019;28:100565. doi: 10.1016/j.rsma.2019.100565
  • Sá AKDDS, Cutrim MVJ, Costa DDS, et al. Algal blooms and trophic state in a tropical estuary blocked by a Dam (northeastern Brazil). Ocean Coast Res. 2021;69:e21009. doi: 10.1590/2675-2824069.20-006akddss
  • Mourão FV, de Sousa ACSR, da Luz Mendes RM, et al. Water quality and eutrophication in the Curuçá estuary in northern Brazil. Reg Stud Mar Sci 2020;39:101450. doi: 10.1016/j.rsma.2020.101450
  • Paula Filho FJ, Marins RV, Chicharo L, et al. Evaluation of water quality and trophic state in the Parnaíba River Delta, northeast Brazil. Reg Stud Mar Sci. 2020;34;101025. doi: 10.1016/j.rsma.2019.101025
  • Sá, AKDS, Cutrim, MVJ, Feitosa, FAN, et al. Multiple stressors influencing the general eutrophication status of transitional waters of the Brazilian tropical coast: An approach utilizing the pressure, state, and response (PSR) framework. J Sea Res. 2022;189:102282. doi: 10.1016/j.seares.2022.102282
  • Cavalcanti LF, Cutrim MVJ, Maciel CCS, et al. Application of multiple indices to the evaluation of trophic and ecological status in a tropical macrotidal estuary (Equatorial Margin, Brazil). Chem Ecol. 2022;38(2):122–144. doi: 10.1080/02757540.2021.2023509
  • Chielle RSA, Marins RV, Dias FJS, et al. Contributions from the main river of the largest open sea delta in the Americas to the CO2 fluxes. Reg Stu Mar Sci. 2023;62:102922. doi: 10.1016/j.rsma.2023.102922
  • Aquino da Silva AG, Stattegger K, Vital H, et al. Coastline change and offshore suspended sediment dynamics in a naturally developing delta (Parnaíba Delta, NE Brazil). Mar Geol. 2019;410:1–15. doi: 10.1016/j.margeo.2018.12.013
  • Szczygielski A, Stattegger K, Schwarzer K, et al. Evolution of the parnaíba delta (NE Brazil) during the late holocene. Geo-Marine Lett. 2015;35:105–117. doi: 10.1007/s00367-014-0395-x
  • Strickland JDH, Parsons TR. A practical handbook of seawater analysis. 2nd ed. Bulletin Fisheries Research Board of Canada; 1972: p. 205.
  • Koroleff K. Determination of phosphorus. In: Grasshoff K, Ehrhardt M, Kremling K, editors. Methods of seawater analysis. 2nd ed. Weinhein: Verlag Chemie; 1983. p. 125–139.
  • Grasshoff K, Ehrhardt M, Kremling K. Methods of seawater analysis, 2nd ed. Weinheim: Verlag chemie; 1983. p. 581–614.
  • United Nations Educational, Scientific and Cultural Organization – UNESCO. Determination of photosynthetic pigments in sea-water, first ed. In: Monogr Oceanogr Method. 1966, Paris.
  • BRASIL. Ministry of environment. Brazilian national council for the environment. Resolution no 357. 2005: Mar 17. Available from: https://www.mma.gov.br/port/conama/res/res05/res35705.
  • Ferrario M, Sar EA, Sala S. Metodología básica para el estudio de fitoplancton con especial referencia a las diatomeas. In: Alveal K, Ferario, M, Oliveira, EC, et al., editors. Manual de métodos ficológicos: Universidad de Concepción; 1995. p. 1–24.
  • Üehlinger V. Étude statistique dês méthodes de dénombrement planctonique. Arch Sci. 1964;17:121–223.
  • Villafañe VE, Reid FMH. Métodos de microscopia para la cuantificación del fitoplancton. In: Alvear K, Ferrario ME, Oliveira-Filho EC, Sars E, editors. Manual de métodos ficológicos. Chile: Universidad de Concepción; 1995. p. 169–185.
  • Guiry MD, Guiry GM. Algaebase: world-wide electronic publication. 2019. National University of Ireland, Galway, http://www.algaebase.org. (Accessed 9 July 2023).
  • Livingston RJ. Phytoplankton bloom effects on a gulf estuary: water quality changes and biological response. Ecol Appl. 2007;17:S110–S128. doi: 10.1890/05-0769.1
  • Caruso G, Leonardi M, Monticelli LS, et al. Assessment of the ecological status of transitional waters in Sicily (Italy): First characterisation and classification according to a multiparametric approach. Mar Pollut Bull. 2010;60:1682–1690. doi: 10.1016/j.marpolbul.2010.06.047
  • Scherrer B. Biostatistique. Montréal, QC, Canada: Gaëtan Morin; 1984. p. 850.
  • Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67:345–366.
  • Fortunato CS, Eiler A, Herfort L, et al. Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME Jour. 2013;7:1899–1911. doi: 10.1038/ismej.2013.79
  • McCullagh P, Nelder JA. Generalized linear models. Boca Rotan, FL: Chapman and Hall/CRC; 2019. doi: 10.1201/9780203753736
  • Burnham KP, Anderson DR. Model selection and multimodel inference [internet]. 2nd ed, Vol. 172. New York, NY: Springer New York; 2004. p. 96–97. doi: 10.1007/b97636
  • Mazerolle MJ. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.1-1; 2017. https://cran.r-project.org/package=AICcmodavg.
  • Moser GAO, Piedras FR, Oaquim ABJ, et al. Tidal effects on phytoplankton assemblages in a near-pristine estuary: a trait-based approach for the case of a shallow tropical ecosystem in Brazil. Mar Ecol. 2017;38:e12450. doi: 10.1111/maec.12450
  • Madhu NV, Anil P, Meenu P, et al. Response of coastal phytoplankton to upwelling induced hydrological changes in the Alappuzha mud bank region, southwest coast of India. Oceanol. 2021;63:261–275. doi: 10.1016/j.oceano.2021.02.001
  • Cavalcanti LF, Cutrim MVJ, Lourenço CB, et al. Patterns of phytoplankton structure in response to environmental gradients in a macrotidal estuary of the Equatorial Margin (Atlantic coast, Brazil). Estuar Coast Shelf Sci. 2020;245:106969. doi: 10.1016/j.ecss.2020.106969
  • Pérez-Ruzafa A, Campillo S, Fernández-Palacios JM, et al. Long-Term dynamic in nutrients, chlorophyll a, and water quality parameters in a coastal lagoon during a process of eutrophication for decades, a sudden break and a relatively rapid recovery. Front Mar Sci. 2019;6:1–23. doi: 10.3389/fmars.2019.00026
  • Bharathi MD, Sarma VVSS. Impact of monsoon-induced discharge on phytoplankton community structure in the tropical Indian estuaries. Reg Stud Mar Sci. 2019;31:100795. doi: 10.1016/j.rsma.2019.100795
  • Han H, Xiao R, Gao G, et al. Influence of a heavy rainfall event on nutrients and phytoplankton dynamics in a well-mixed semi-enclosed bay. J Hydrol. 2023;617:128932. doi: 10.1016/j.jhydrol.2022.128932
  • Kang L, He Y, Dai L, et al. Interactions between suspended particulate matter and algal cells contributed to the reconstruction of phytoplankton communities in turbulent waters. Water Res. 2019;149:251–262. doi: 10.1016/j.watres.2018.11.003
  • Kadiri MO. A Spectrum of phytoplankton flora along salinity gradient in the eastern Niger Delta area of Nigeria. Acta Bot Hung. 2002;44:75–83. doi: 10.1556/ABot.44.2002.1-2.6
  • Williams A, Benson N. Interseasonal hydrological characteristics and variabilities in surface water of tropical estuarine ecosystems within Niger Delta, Nigeria. Environ Monit Assess. 2010;165:399–406. doi: 10.1007/s10661-009-0955-0
  • Chukwu M, Afolabi E. Phytoplankton abundance and distribution of fish earthen ponds in Lagos, Nigeria. J Appl Sci Environ Manage. 2018;21:1245–1249. doi: 10.4314/JASEM.V21I7.3
  • Hoang H, Duong T, Nguyen K, et al. Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam). Environ Monit Assess. 2018;190:1–18. doi: 10.1007/s10661-017-6435-z
  • Golubkov M, Nikulina V, Golubkov S. Species-level associations of phytoplankton with environmental variability in the Neva Estuary (Baltic Sea). Oceanol. 2021;63:149–162. doi: 10.1016/j.oceano.2020.11.002
  • Prabhudessai SS, Rivonker CU. Distribution of dinoflagellate cysts along the salinity gradient in two tropical estuaries along the West coast of India. Mar Micropaleontol. 2020;156:101852. doi: 10.1016/j.marmicro.2020.101852
  • Wang C, Li X, Lai Z, et al. Seasonal variations of Aulacoseira granulata population abundance in the Pearl River Estuary. Estuar Coast Shelf Sci. 2009;85:585–592. doi: 10.1016/j.ecss.2009.09.031
  • Bortolini JC, Rodrigues LC, Jati S. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnol Bras. 2014;26:98–108. doi: 10.1590/S2179-975X2014000100011
  • Liu J, Chen Y, Li M, et al. Water-level fluctuations are key for phytoplankton taxonomic communities and functional groups in Poyang Lake. Ecol Indic. 2019;104:470–478. doi: 10.1016/j.ecolind.2019.05.021
  • Costa DDS, Cutrim MVJ. Spatial and seasonal variation in physicochemical characteristics and phytoplankton in an estuary of a tropical delta system. Reg Stud Mar Sci. 2021;44:101746. doi: 10.1016/j.rsma.2021.101746
  • Li G, Lin Q, Lin J, et al. Environmental gradients regulate the spatial variations of phytoplankton biomass and community structure in surface water of the Pearl River estuary. Acta Ecol Sin. 2014;34:129–133. doi: 10.1016/j.chnaes.2014.01.002
  • Harris TD, Wilhelm FM, Graham JL, et al. Experimental manipulation of TN:TP ratios suppress cyanobacterial biovolume and microcystin concentration in large-scale in situ mesocosms. Lake Reser Manage. 2014;30:72–83. doi: 10.1080/10402381.2013.876131
  • Nhu YDT, Hoang NT, Lieu PK, et al. Effects of nutrient supply and nutrient ratio on diversity-productivity relationships of phytoplankton in the Cau Hai lagoon, Vietnam. Ecol Evol. 2019;9(10):5950–5962. doi: 10.1002/ece3.5178
  • Wu B, Dai S, Wen X, et al. Chlorophyll-nutrient relationship changes with lake type, season and small-bodied zooplankton in a set of subtropical shallow lakes. Ecol Indic. 2022;135:108571. doi: 10.1016/j.ecolind.2022.108571
  • Tao W, Niu L, Liu F, et al. Influence of river-tide dynamics on phytoplankton variability and their ecological implications in two Chinese tropical estuaries. Ecol Indic. 2020;115:106458. doi: 10.1016/j.ecolind.2020.106458
  • Paczkowska J, Rowe OF, Figueroa D, et al. Drivers of phytoplankton production and community structure in nutrient-poor estuaries receiving terrestrial organic inflow. Mar Env Res. 2019;151:104778. doi: 10.1016/j.marenvres.2019.104778
  • Nwe LW, Azhikodan G, Yokoyama K, et al. Spatio-temporal distribution of diatoms and dinoflagellates in the macrotidal Tanintharyi River estuary, Myanmar. Reg Stud Mar Sci. 2021;42:101634. doi: 10.1016/j.rsma.2021.101634
  • Hardikar R, Haridevi CK, Ram A, et al. Distribution of size-fractionated phytoplankton biomass from the anthropogenically stressed tropical creek (Thane Creek, India). Reg Stud Mar Sci. 2021;41:101577. doi: 10.1016/j.rsma.2020.101577

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.