18
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Insights into the distribution characteristic of microbiota in alkaline–sandy soil with inorganic and organic fertiliser treatments: contrasting abundance, structure and functionality

, , , , &
Pages 643-663 | Received 15 Sep 2023, Accepted 22 Apr 2024, Published online: 13 May 2024

References

  • Guo B, Wei C, Yu Y, et al. The dominant influencing factors of desertification changes in the source region of Yellow River: climate change or human activity? Sci Total Environ. 2022;813:152512. doi: 10.1016/j.scitotenv.2021.152512
  • Wang X, Li X, Cai D, et al. Salinification and salt transports under aeolian processes in potential desertification regions of China. Sci Total Environ. 2021;782:146832. doi: 10.1016/j.scitotenv.2021.146832
  • Zong N, Fu G. Variations in species and function diversity of soil fungal community along a desertification gradient in an alpine steppe. Ecol Indic. 2021;131:108197. doi: 10.1016/j.ecolind.2021.108197
  • Elnashar A, Zeng H, Wu B, et al. Assessment of environmentally sensitive areas to desertification in the Blue Nile Basin driven by the MEDALUS-GEE framework. Sci Total Environ. 2022;815:152925. doi: 10.1016/j.scitotenv.2022.152925
  • Zhu B, Zhang J, Sun C. Potential links of gobi, dust, and desertification: a comprehensive understanding from aeolian landform evolution in a middle-latitude desert. Sediment Geol. 2022;428:106049. doi: 10.1016/j.sedgeo.2021.106049
  • Benassi F, Cividino S, Cudlin P, et al. Population trends and desertification risk in a Mediterranean region, 1861-2017. Land Use Policy. 2020;95:104626. doi: 10.1016/j.landusepol.2020.104626
  • Wang L, Wang P, Sheng M, et al. Ecological stoichiometry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China. Glob Ecol Conserv. 2018;16:e00449. doi: 10.1016/J.GECCO.2018.E00449
  • Christian BA, Dhinwa PS, Ajai. Long term monitoring and assessment of desertification processes using medium & high resolution satellite data. Appl Geogr. 2018;97:10–24. doi: 10.1016/j.apgeog.2018.04.010
  • Li S, Li C, Yao D, et al. Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration. Ecol Eng. 2020;152:105883. doi: 10.1016/j.ecoleng.2020.105883
  • Yang X, Duan P, Li G, et al. Spatial-heterogeneous granulation of organic amendments and chemical fertilizer stimulated N2O emissions from agricultural soil: an microcosm study. J Environ Manage. 2021;277:111437. doi: 10.1016/j.jenvman.2020.111437
  • Hu X, Huang X, Zhao H, et al. Possibility of using modified fly ash and organic fertilizers for remediation of heavy-metal-contaminated soils. J Clean Prod. 2021;284:124713. doi: 10.1016/j.jclepro.2020.124713
  • Hermassi M, Valderrama C, Font O, et al. Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. Sci Total Environ. 2020;731:139002. doi: 10.1016/j.scitotenv.2020.139002
  • Hermassi M, Valderrama C, Moreno N, et al. Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. J Environ Chem Eng. 2017;5(1):160–169. doi: 10.1016/j.jece.2016.11.027
  • Wei M, Hu G, Wang H, et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a fluvo-aquic soil in Northern China. Eur J Soil Biol. 2017;82:27–34. doi: 10.1016/j.ejsobi.2017.08.002
  • Zhaoxiang W, Huihu L, Qiaoli L, et al. Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere. 2020;16:100264. doi: 10.1016/j.rhisph.2020.100264
  • Gu S, Hu Q, Cheng Y, et al. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil Tillage Res. 2019;195:104356. doi: 10.1016/j.still.2019.104356
  • Stamford NP, da Silva EVN, Oliveira W, et al. Benefits of microbial fertilizer in interspecific interaction with textile sludges on cowpea in a Brazilian ultisol and on wastes toxicity. Environ Technol Innov. 2020;18:100756. doi: 10.1016/j.eti.2020.100756
  • Luo X, Qian H, Wang L, et al. Fertilizer types shaped the microbial guilds driving the dissimilatory nitrate reduction to ammonia process in a ferralic cambisol. Soil Biol Biochem. 2020;141:107677. doi: 10.1016/j.soilbio.2019.107677
  • Chen X, Zhang Z, Gu M, et al. Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Sci Total Environ. 2020;748:141166. doi: 10.1016/j.scitotenv.2020.141166
  • Cong P, Ouyang Z, Hou R, et al. Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils. Soil Tillage Res. 2017;168:33–41. doi: 10.1016/j.still.2016.12.005
  • Yu L, Yu M, Lu X, et al. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Sci Total Environ. 2018;640-641:1221–1230. doi: 10.1016/j.scitotenv.2018.06.018
  • Song D, Chen L, Zhang S, et al. Combined biochar and nitrogen fertilizer change soil enzyme and microbial activities in a 2-year field trial. Eur J Soil Biol. 2020;99:103212. doi: 10.1016/j.ejsobi.2020.103212
  • Yue X, Zhang J, Shi A, et al. Manure substitution of mineral fertilizers increased functional stability through changing structure and physiology of microbial communities. Eur J Soil Biol. 2016;77:34–43. doi: 10.1016/j.ejsobi.2016.10.002
  • Sall SN, Ndour NYB, Diedhiou-Sall S, et al. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer. J Environ Manage. 2015;161:30–37. doi: 10.1016/j.jenvman.2015.06.017
  • Bei S, Zhang Y, Li T, et al. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agric Ecosyst Environ. 2018;260:58–69. doi: 10.1016/j.agee.2018.03.014
  • Gautam A, Sekaran U, Guzman J, et al. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environ Sustain Indic. 2020;8:100073. doi: 10.1016/j.indic.2020.100073
  • Li Z, Sun X, Huang Z, et al. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: a case study in Ningxia, China. Sci Total Environ. 2020;735:139370. doi: 10.1016/j.scitotenv.2020.139370
  • Wang X, Zheng W, Tian W, et al. Groundwater hydrogeochemical characterization and quality assessment based on integrated weight matter-element extension analysis in Ningxia, upper Yellow River, northwest China. Ecol Indic. 2022;135:108525. doi: 10.1016/j.ecolind.2021.108525
  • Chen A, Yang X, Guo J, et al. Synthesized remote sensing-based desertification index reveals ecological restoration and its driving forces in the northern sand-prevention belt of China. Ecol Indic. 2021;131:108230. doi: 10.1016/j.ecolind.2021.108230
  • Zhang M, Liu X, Li Y, et al. Microbial community and metabolic pathway succession driven by changed nutrient inputs in tailings: effects of different nutrients on tailing remediation. Sci Rep. 2017;7(1):474. doi: 10.1038/s41598-017-00580-3
  • Maas B, Fabian Y, Kross SM, et al. Divergent farmer and scientist perceptions of agricultural biodiversity, ecosystem services and decision-making. Biol Conserv. 2021;256:109065. doi: 10.1016/j.biocon.2021.109065
  • Gayathri R, Mahboob S, Govindarajan M, et al. A review on biological carbon sequestration: a sustainable solution for a cleaner air environment, less pollution and lower health risks. J King Saud Univ Sci. 2021;33(2):101282. doi: 10.1016/j.jksus.2020.101282
  • Yan X, Wang J, Hu X, et al. Contrasting effects of microbial fertiliser and organic fertiliser on soil bacterial community in coal mine dump of Inner Mongolia. Chem Ecol. 2021;37:384–398. doi: 10.1080/02757540.2021.1886283
  • Ren Y, Yu G, Shi C, et al. Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses. IMeta. 2022;1(2):e12. doi: 10.1002/imt2.12
  • Kumar L, Chugh M, Kumar S, et al. Remediation of petrorefinery wastewater contaminants: a review on physicochemical and bioremediation strategies. Process Saf Environ Prot. 2022;159:362–375. doi: 10.1016/j.psep.2022.01.009
  • Villegas-Plazas M, Sanabria J, Junca H. A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems. J Environ Manage. 2019;251:109581. doi: 10.1016/j.jenvman.2019.109581
  • Zhang Y, Chen C, Shen W, et al. Comparative transcriptome analysis reveals the biological mechanism of selective cadmium enrichment in Tegillarca granosa. Aquac Rep. 2021;21:100960. doi: 10.1016/j.aqrep.2021.100960
  • Chakdar H, Thapa S, Srivastava A, et al. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. J Hazard Mater. 2022;424:127609. doi: 10.1016/j.jhazmat.2021.127609
  • Li X, Rengel Z, Mapfumo E. Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil. 2007;290:269–282. doi: 10.1007/s11104-006-9158-4
  • Liu C, Gong X, Dang K, et al. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environ Res. 2020;184:109261. doi: 10.1016/j.envres.2020.109261
  • Jin B-J, Bi Q-F, Li K-J, et al. Long-term combined application of chemical fertilizers and organic manure shapes the gut microbial diversity and functional community structures of earthworms. Appl Soil Ecol. 2022;170:104250. doi: 10.1016/j.apsoil.2021.104250
  • Zheng L, Chen H, Wang Y, et al. Responses of soil microbial resource limitation to multiple fertilization strategies. Soil Tillage Res. 2020;196:104474. doi: 10.1016/j.still.2019.104474
  • Pan H, Chen M, Feng H, et al. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res. 2020;198:104540. doi: 10.1016/j.still.2019.104540
  • Thilagar G, Bagyaraj DJ, Rao MS. Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Sci Hortic. 2016;198:27–35. doi: 10.1016/j.scienta.2015.11.021
  • Kumar V, Singh K, Shah MP, et al. Application of omics technologies for microbial community structure and function analysis in contaminated environment. Wastewater Treat. 2021:1–40. doi: 10.1016/B978-0-12-821881-5.00001-5
  • Lv Y, Tang C, Liu X, et al. Stabilization and mechanism of uranium sequestration by a mixed culture consortia of sulfate-reducing and phosphate-solubilizing bacteria. Sci Total Environ. 2022;827:154216. doi: 10.1016/j.scitotenv.2022.154216
  • Chandler L, Harford AJ, Hose GC, et al. Saline mine-water alters the structure and function of prokaryote communities in shallow groundwater below a tropical stream. Environ Pollut. 2021;284:117318. doi: 10.1016/j.envpol.2021.117318
  • She J, Liu J, He H, et al. Microbial response and adaption to thallium contamination in soil profiles. J Hazard Mater. 2022;423:127080. doi: 10.1016/j.jhazmat.2021.127080
  • Liu M, Wang C, Liu X, et al. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl Soil Ecol. 2020;156:103705. doi: 10.1016/j.apsoil.2020.103705
  • Ji X, Abakumov E, Chigray S, et al. Response of carbon and microbial properties to risk elements pollution in arctic soils. J Hazard Mater. 2021;408:124430. doi: 10.1016/j.jhazmat.2020.124430
  • Das S, Gwon HS, Khan MI, et al. Taxonomic and functional responses of soil microbial communities to slag-based fertilizer amendment in rice cropping systems. Environ Int. 2019;127:531–539. doi: 10.1016/j.envint.2019.04.012
  • Yan T, Xue J, Zhou Z, et al. Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Sci Total Environ. 2021;794:148757. doi: 10.1016/j.scitotenv.2021.148757
  • Yu Q, Yang J, Su W, et al. Heavy metals and microbiome are negligible drivers than mobile genetic elements in determining particle-attached and free-living resistomes in the Yellow River. J Hazard Mater. 2022;424:127564. doi: 10.1016/j.jhazmat.2021.127564
  • Irshad S, Xie Z, Kamran M, et al. Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland. Environ Pollut. 2021;291:118269. doi: 10.1016/j.envpol.2021.118269
  • Xing Y, Jiang Y, Liu S, et al. Surface corrosion by microbial flora enhances the application potential of phosphate rock for cadmium remediation. Chem Eng J. 2022;429:132560. doi: 10.1016/j.cej.2021.132560
  • Dangi S, Gao S, Duan Y, et al. Soil microbial community structure affected by biochar and fertilizer sources. Appl Soil Ecol. 2020;150:103452. doi: 10.1016/j.apsoil.2019.103452
  • Egidi G, Cividino S, Paris E, et al. Assessing the impact of multiple drivers of land sensitivity to desertification in a Mediterranean country. Environ Impact Assess Rev. 2021;89:106594. doi: 10.1016/j.eiar.2021.106594
  • Ahmed Y, Zhong J, Yuan Z, et al. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. Water Res. 2021;197:117075. doi: 10.1016/j.watres.2021.117075
  • Sun C, Zhang B, Ning D, et al. Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: diversity, composition, phylogenetic group based assembly and co-occurrence pattern. Water Res. 2021;200:117295. doi: 10.1016/j.watres.2021.117295
  • Zhang M, Kolton M, Li Z, et al. Bacteria responsible for antimonite oxidation in antimony-contaminated soil revealed by DNA-SIP coupled to metagenomics. FEMS Microbiol Ecol. 2021;97(5):fiab057. doi: 10.1093/femsec/fiab057
  • Cheng J, Ye Q, Lu Z, et al. Quantification of the sorption of organic pollutants to minerals via an improved mathematical model accounting for associations between minerals and soil organic matter. Environ Pollut. 2021;280:116991. doi: 10.1016/j.envpol.2021.116991
  • Huang W, Wu P, Chiang T. Metagenomics: potential for bioremediation of soil contaminated with heavy metals. Ecol Genet Genomics. 2022;22:100111. doi: 10.1016/j.egg.2021.100111
  • Liu Z, Shang H, Han F, et al. Improvement of nitrogen and phosphorus availability by Pseudoalteromonas sp. during salt-washing in saline-alkali soil. Appl Soil Ecol. 2021;168:104117. doi: 10.1016/j.apsoil.2021.104117
  • Nan L, Guo Q, Cao S. Archaeal community diversity in different types of saline-alkali soil in arid regions of Northwest China. J Biosci Bioeng. 2020;130(4):382–389. doi: 10.1016/j.jbiosc.2020.06.001
  • Liang Y, Zhao H, Zhang X, et al. Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites. Sci Total Environ. 2014;487:272–278. doi: 10.1016/j.scitotenv.2014.04.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.