53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Pistia Stratiotes based heavy metals phytoremediation of a Himalayan river impacted by hydroelectric plant in an Indo Burma hotspot region

, , &
Pages 796-815 | Received 02 Aug 2023, Accepted 28 Apr 2024, Published online: 12 May 2024

References

  • Patil PN, Sawant DV, Deshmukh RN. Physico-chemical parameters for testing of water – a review. Int J Environ Sci. 2012;3(3):1194–1207.
  • Rajiv P, Hasna AS, Kamaraj M, et al. Physico chemical and microbial analysis of different river waters in Western Tamil Nadu, India. Res J Environ Sci. 2012;1(1):2–6.
  • Giri A, Bharti VK, Kalia S, et al. A review on water quality and dairy cattle health: a special emphasis on high-altitude region. Appl Water Sci. 2020;10:1–16. doi:10.1007/s13201-020-1160-0. https://cpcb.nic.in/who-guidelines-for-drinking-water-quality/ accessed on 4th March 2023
  • Rakib MR, Jolly YN, Begum BA, et al. Assessment of trace element toxicity in surface water of a fish breeding river in Bangladesh: a novel approach for ecological and health risk evaluation. Toxin rev. 2022;41(2):420–436. doi:10.1080/15569543.2021.1891936
  • Elavarasan RM, Shafiullah GM, Padmanaban S, et al. A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective. Ieee Access. 2020;8:74432–74457. doi:10.1109/ACCESS.2020.2988011
  • Moran EF, Lopez MC, Moore N, et al. Sustainable hydropower in the 21st century. Proc Natl Acad Sci USA. 2018;115(47):11891–11898. doi:10.1073/pnas.1809426115
  • Gibeau P, Palen WJ. Predicted effects of flow diversion by run-of-river hydropower on bypassed stream temperature and bioenergetics of salmonid fishes. River Res Appl. 2020;36(9):1903–1915. doi:10.1002/rra.3706
  • Česonienė L, Dapkienė M, Punys P. Assessment of the impact of small hydropower plants on the ecological status indicators of water bodies: a case study in Lithuania. Water (Basel). 2021;13(4):433. doi:10.3390/w13040433
  • Luis J, Sidek LM, Desa MN, et al. Sustainability of hydropower as source of renewable and clean energy. IOP Conf Ser: Earth and Environ Sci. 2013;16(1):012050. doi:10.1088/1755-1315/16/1/012050
  • Winton RS, Calamita E, Wehrli B. Reviews and syntheses: dams, water quality and tropical reservoir stratification. Biogeosciences. 2019;16(8):1657–1671. doi:10.5194/bg-16-1657-2019
  • Koralay N, Kara O, Kezik U. Effects of run-of-the-river hydropower plants on the surface water quality in the Solakli stream watershed, Northeastern Turkey. Water Environ J. 2018;32(3):412–421. doi:10.1111/wej.12338
  • Wu Y, Dai R, Xu Y, et al. Statistical assessment of water quality issues in Hongze Lake, China, related to the operation of a water diversion project. Sustainability. 2018;10(6):1885. doi:10.3390/su10061885
  • Alipour MH, Kibler KM, Alizadeh B. Flow alteration by diversion hydropower in tributaries to the Salween river: a comparative analysis of two streamflow prediction methodologies. Int J of River Basin Manag. 2020. doi:10.1080/15715124.2020.1760289 (in press).
  • Chantha O, Ty S. Assessing changes in flow and water quality emerging from hydropower development and operation in the Sesan River Basin of the Lower Mekong Region. Sustain Water Resour Manag. 2020;6:1–2. doi:10.1007/s40899-020-00386-8
  • Ashby S. Impacts of hydrology and hydropower on water quality in reservoir tailwaters. WIT Trans Ecol Environ. 2009;124:55–56. doi:10.2495/RM090061
  • Xu T, Chang F, He X, et al. Influence of cascade hydropower development on water quality in the middle jinsha river on the upper reach of the Yangtze river. Water (Basel). 2022;14(12):1943. doi:10.3390/w14121943
  • Tomczyk P, Gałka B, Wiatkowski M, et al. Analysis of spatial distribution of sediment pollutants accumulated in the vicinity of a small hydropower plant. Energies. 2021;14(18):5935. doi:10.3390/en14185935
  • Rai P K. Heavy-metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an eco-sustainable approach. Int J Phytoremediation. 2008;10(2):133–160. doi:10.1080/15226510801913918
  • Rai PK, Lee SS, Zhang M, et al. Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int. 2019;125:365–385. doi:10.1016/j.envint.2019.01.067
  • Cabral Pinto MM, Ordens CM, Condesso de Melo MT, et al. An inter-disciplinary approach to evaluate human health risks due to long-term exposure to contaminated groundwater near a chemical complex. Expo Health. 2020;12:199–214. doi:10.1007/s12403-019-00305-z
  • Rai PK. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol. 2009;39(9):697–753. doi:10.1080/10643380801910058
  • Gerardo B, Pinto MC, Nogueira J, et al. Associations between trace elements and cognitive decline: an exploratory 5-year follow-up study of an elderly cohort. Int J Environ Res Public Health. 2020;17:1–18. doi:10.3390/ijerph17176051
  • Nyarko E, Boateng CM, Asamoah O, et al. Potential human health risks associated with ingestion of heavy metals through fish consumption in the Gulf of Guinea. Toxicol Rep. 2023;10:117–123. doi:10.1016/j.toxrep.2023.01.005
  • Bharti R, Sharma R. Effect of heavy metals: an overview. Mater Today Proc. 2022;51:880–885. doi:10.1016/j.matpr.2021.06.235
  • Rahman SU, Yasin G, Nawaz MF, et al. Evaluation of heavy metal phytoremediation potential of six tree species of Faisalabad city of Pakistan during summer and winter seasons. J Environ Manag. 2022;320:115801. doi:10.1016/j.jenvman.2022.115801
  • Yasin G, Ur Rahman S, Yousaf MT, et al. Phytoremediation potential of E. camaldulensis and M. alba for copper, cadmium, and lead absorption in urban areas of Faisalabad City, Pakistan. Int J Environ Res. 2021;15:597–612. doi:10.1007/s41742-021-00330-4
  • Rahman MA, Hasegawa H. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere. 2011;83(5):633–646. doi:10.1016/j.chemosphere.2011.02.045
  • Rai PK, et al. The environmental, socio-economic, and health effects of invasive alien plants: review on Tithonia diversifolia (Hemsl.) A. Gray in Asteraceae. S Afr J Bot. 2023;162:461–480. doi:10.1016/j.sajb.2023.09.038
  • Mustafa HM, Hayder G. Performance of Pistia stratiotes, Salvinia molesta, and Eichhornia crassipes aquatic plants in the tertiary treatment of domestic wastewater with varying retention times. Appl Sci. 2020;10:9105. doi:10.3390/app10249105
  • Imron MF, Firdaus AAF, Flowerainsyah ZO, et al. Phytotechnology for domestic wastewater treatment: performance of Pistia stratiotes in eradicating pollutants and future prospects. J Water Process Eng. 2023;51:103429. doi:10.1016/j.jwpe.2022.103429
  • Lakshmi KS, Sailaja VH, Reddy MA. Phytoremediation—a promising technique in waste water treatment. Int J Sci Res Manag. 2017;5:5480–5489. doi:10.18535/ijsrm/v5i6.20
  • Ansari AA, Naeem M, Gill SS, et al. Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. Egypt J Aquat Res. 2020;46:371–376. doi:10.1016/j.ejar.2020.03.002
  • Hill JM, Hutton B, Steffins K, et al. Floating along marsh edges: the impact of invasive water hyacinth (eichornia crassipes) on estuarine species assemblages and predation risk. J Exp Mar Biol Ecol. 2021;544:151618. doi:10.1016/j.jembe.2021.151618
  • Buta E, Borșan IL, Omotă M, et al. Comparative phytoremediation potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in two treatment facilities in Cluj County, Romania. Horticulturae. 2023;9(4):503. doi:10.3390/horticulturae9040503
  • Galal TM, Eid EM, Dakhil MA, et al. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediation. 2018;20(5):440–447. doi:10.1080/15226514.2017.1365343
  • Kumar V, Singh J, Saini A, et al. Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ Sustain. 2019;2:55–65. doi:10.1007/s42398-019-00050-8
  • Mazumdar K, Das S. Phytoremediation of trace elements from paper mill wastewater with Pistia stratiotes L.: metal accumulation and antioxidant response. In: Kumar V, Shah MP, Shahi SK, editors. Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water. Amsterdam: Elsevier; 2022. p. 523–537. doi:10.1016/B978-0-323-85763-5.00020-9
  • Kumar V, Singh J, Chopra AK. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Int J Phytoremediation. 2018;20(5):507–521. DOI: 10.1080/15226514.2017.1393391
  • Mufarrege MM, Hadad HR, Maine MA. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Arch Environ Contam Toxicol. 2010;58:53–61. doi:10.1007/s00244-009-9350-7
  • Ali Esmat F, Galal TM, Hassan LM, et al. Seasonal potential of Pistia stratiotes in nutrient removal to eliminate eutrophication in Al-Sero Drain (South Nile Delta, Egypt). J Freshw Ecol. 2021;36(1):173–187. doi:10.1080/02705060.2021.1915397
  • Mishima D, et al. Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour Technol. 2008;99(7):2495–2500. doi:10.1016/j.biortech.2007.04.056
  • Robles-Pliego M, Olguín EJ, Hernández-Landa J, et al. Cuervo-López F dual purpose system for water treatment from a polluted river and the production of Pistia stratiotes biomass within a biorefinery. CLEAN– soil, air. Water (Basel). 2015;43(11):1514–1521. doi:10.1002/clen.201400222
  • Olguín EJ, García-López DA, González-Portela RE, et al. Year-round phytofiltration lagoon assessment using Pistia stratiotes within a pilot-plant scale biorefinery. Sci Total Environ. 2017;92:326–333. doi:10.1016/j.scitotenv.2017.03.067
  • Standard methods for the examination of water and wastewater. APHA, AWWA and WEF, 21st Edition; 2005.
  • Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1–15. doi:10.1104/pp.24.1.1
  • Westlake DF. Macrophytes. In: Vollenweider RA, editor. A manual on methods for measuring primary production in aquatic environments. IBP handbook No. 12. international biological programme. Oxford: Blackwell Scientific; 1974. p. 32–42.
  • Centers for Disease Control and Prevention. (2011). Agency for toxic substances and disease registry. 2006. Recommendations to improve preconception health and health care—United States: a report of the CDC/ATSDR Preconception Care Work Group and the Select Panel on Preconception Care.
  • Mahurpawar M. Effects of heavy metals on human health. Int J Res Granthaalayah. 2015;530:1–7. doi:10.29121/granthaalayah.v3.i9SE.2015.3282
  • Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;2:60–72. doi:10.2478/intox-2014-0009
  • Hasaballah AF, Hegazy TA, Elemam DA. Performance evaluation of Pistia stratiotes and Lemna minor for wastewater phytoremediation: optimum conditions for pilot-scale. Int J Environ Sci Technol. 2024;21:467–480. doi:10.1007/s13762-023-05001-9
  • Singh MM, Rai PK. A microcosm investigation of Fe (iron) removal using macrophytes of ramsar lake: a phytoremediation approach. Int J Phytoremediation. 2016;18(12):1231–1236. doi:10.1080/15226514.2016.1193471
  • Wibowo YG, Nugraha AT, Rohman A. Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environ Nanotechnol Monit Manag. 2023;20:100781. doi:10.1016/j.enmm.2023.100781
  • Rai PK. Heavy metals phyto-technologies from a Ramsar wetland plants: green approach. Chem Ecol. 2018;34(8):786–796. doi:10.1080/02757540.2018.1501476
  • El-Liethy MA, Dakhil MA, El-Keblawy A, et al. Temporal phytoremediation potential for heavy metals and bacterial abundance in drainage water. Sci Rep. 2022;12:8223. doi:10.1038/s41598-022-11951-w
  • Şentürk İ, Eyceyurt Divarcı NS, Öztürk M. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes). Int J Phytoremediation. 2023;25(5):550–561. doi:10.1080/15226514.2022.2092063
  • Coelho DG, da Silva VM, Gomes Filho AA, et al. Bioaccumulation and physiological traits qualify Pistia stratiotes as a suitable species for phytoremediation and bioindication of iron-contaminated water. J Hazard Mater. 2023;446:130701. doi:10.1016/j.jhazmat.2022.130701
  • Rai PK, Song H, Kim JH. Nanoparticles modulate heavy-metal and arsenic stress in food crops: hormesis for food security, safety, and public health. Sci Total Environ. 2023;902:166064. doi:10.1016/j.scitotenv.2023.166064
  • Imron MF, Firdaus AAF, Flowerainsyah ZO, et al. Phytotechnology for domestic wastewater treatment: performance of Pistia stratiotes in eradicating pollutants and future prospects. J Water Process Eng. 2023;51:103429. doi:10.1016/j.jwpe.2022.103429

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.