546
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Exacerbating effects of PM2.5 in OVA-sensitized and challenged mice and the expression of TRPA1 and TRPV1 proteins in lungs

, PhD, , PhD, , BA, , MA & , BA
Pages 807-817 | Received 04 Aug 2016, Accepted 26 Nov 2016, Published online: 12 Apr 2017

References

  • Ge JB, Xu YJ. Internal medicine. 8 ed. Beijing: People's Medical Publishing House; 2014. 28p.
  • Akinbami LJ, Moorman JE, Garbe PL, Sondik EJ. Status of childhood asthma in the United States, 1980–2007. Pediatrics 2009;123(Suppl. 3):S131–S145.
  • Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med 2006;355:2226–2235.
  • Wong GW, Chow CM. Childhood asthma epidemiology: insights from comparative studies of rural and urban populations. Pediatr Pulmonol 2008;43:107–116.
  • Shuk MH. Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010;126:453–465.
  • Mirabelli MC, Vaidyanathan A, Flanders WD, Qin X, Garbe P. Outdoor PM2.5, ambient air temperature, and asthma symptoms in the past 14 days among adults with active asthma. Environ Health Perspect 2016 Jul 6. [Epub ahead of print].
  • Dunea D, Iordache S, Liu HY, Bøhler T, Pohoata A, Radulescu C. Quantifying the impact of PM2.5 and associated heavy metals on respiratory health of children near metallurgical facilities. Environ Sci Pollut Res Int 2016;23(15):15395–15406.
  • Gorai AK, Tchounwou PB, Tuluri F. Association between ambient air pollution and asthma prevalence in different population groups residing in Eastern Texas, USA. Int J Environ Res Public Health 2016;13(4):378.
  • Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Resp Crit Care Med 2000;162(3):981–988.
  • Zhou H, Kobzik L. Effect of concentrated ambient particles on macrophage phagocytosis and killing of Streptococcus pneumonia. Am J Resp Cell Mole Biol 2007;36(4):460–465.
  • Jiang L, Diaz PT, Best TM, Stimpfl JN, He F, Zuo L. Molecular characterization of redox mechanisms in allergic asthma. Ann Allergy Asthma Immunol 2014;113:137–142.
  • Ogino K, Zhang R, Takahashi H, Takemoto K, Kubo M, Murakami I, Wang DH, Fujikura Y. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice. PLoS ONE 2014;9(3):e92710.
  • Dobreva ZG, Kostadinova GS, Popov BN, Petkov GS, Stanilova SA. Proinflammatory and anti-inflammatory cytokines in adolescents from Southeast Bulgarian cities with different levels of air pollution. Toxicol Ind Health 2015;31(12):1210–1217.
  • Poole JA, Gleason AM, Bauer C, West WW, Alexis N, Reynolds SJ, Romberger DJ, Kielian T. αβ T cells and amixed Th1/Th17 response are important in organic dust-induced airway disease. Ann Allergy Asthma Immunol 2012;109(4):266–273.
  • He M, Ichinose T, Ren Y, Song Y, Yoshida Y, Arashidani K, Yoshida S, Nishikawa M, Takano H, Sun G. PM2.5-rich dust collected from the air in Fukuoka, Kyushu, Japan, can exacerbate murine lung eosinophilia. Inhal Toxicol 2015;27(6):287–299.
  • Yang L, Liu G, Lin Z, Wang Y, He H, Liu T, Kamp DW. Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells. Environ Toxicol 2016;31(8):923–936.
  • Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 2007;104(33):13519–13524.
  • Caceres Al, Brackmann M, Elia MD, Bessac BF, del Camino D, D'Amours M, Witek JS, Fanger CM, Chong JA, Hayward NJ, Homer RJ, Cohn L, Huang X, Moran MM, Jordt SE. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci USA 2009;106:9099–9104.
  • Cantero RG, Gonzalez JR, Fandos C, Duran-Tauleria E, Smit LA, Kauffmann F, Antó JM, Valverde MA. Loss of function of transient receptor potential vanilloid 1(TRPV1) genetic variant is associated with lower risk of active childhood asthma. J Biol Chem 2010;285:27532–27535.
  • McAIexander MA, Thomas TC. The role of transient receptor potential channels in respiratory symptoms and pathophysiology. Adv Exp Med Biol 2011;704:969–986.
  • Baker K, Raemdonck K, Dekkak B, Snelgrove RJ, Ford J, Shala F, Belvisi MG, Birrell MA. Role of the ion channel, transient receptor potential cation channel subfamily V member 1 (TRPV1), in allergic asthma. Respir Res 2016;17(1):67.
  • White, JPM, Urban L, Nagy I. TRPV1 function in health and disease. Curr Pharm Biotechnol 2011;12:130–144.
  • Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 2012;166:510–521.
  • Ghelfi E, Rhoden CR, Wellenius GA, Lawrence J, Gonzalez-Flecha B. Cardiac oxidative stress and electrophysiological changes in rats exposed to concentrated ambient particles are mediated by TRP-dependent pulmonary reflexes. Toxicol Sci 2008;102(2):328–336.
  • Ismail O, Gulben G, Faruk EK, Deniz F, Isil B, Tunc A. Allogeneic pluripotent stem cells suppress airway inflammation in murine model of acute asthma. Int Immunopharmacol 2014;22(1):31–40.
  • Vaibhav SD, Venkateswara RA, Pinakin AK, Vajir M, Deep P, Kulbhushan T. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model. Toxicol Appl Pharmacol 2016;306:17–26.
  • Underwood S, Foster M, Raebarn D, et al. Time course of antigen induced airway inflammation in the guinea pig and its relationship to airway hyperre2 sponsiveness. Eur Respire 1995;8:2014.
  • Wagner JG, Morishita M, Keeler GJ, Harkema JR. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies. Environ Health 2012;11:45.
  • Brandt EB, Kovacic MB, Lee GB, Gibson AM, Acciani TH, Le Cras TD, Ryan PH. Diesel exhaust particle induction of IL-17A contributes to severe asthma. J Allergy Clin Immunol 2013;132:1194–1204.
  • Zhang X, Zhong W, Meng Q, Lin Q, Fang C, Huang X, Li C, Huang Y, Tan J. Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J Asthma 2015;52(8):785–794.
  • Rehman R, Bhat YA, Panda L, Mabalirajan U. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury. Int Immunopharmacol 2013;15(3):597–605.
  • Choi IS. Immune tolerance by induced regulatory T cells in asthma. Allergy Asthma Immunol Res 2012;4(3):113–115.
  • Guleria R, Talwar D, Mahashur A, Kotnis M. Asthma diagnosis and treatment-1015. Improvements in lung function in an Indian population with IgE mediated asthma receiving omalizumab in a real-world setting. World Allergy Organ J 2013;6(1):15.
  • Shang YX. Sensory neuropeptides and bronchial asthma. Foreign Med Sec Pediatr 2001;28(4):178–181.
  • Joos GF, Germonpe PR, Pauwels RA. Role of tachykinins in asthma. Allergy 2000;55(4):321–337.
  • Reynolds PN, Holmes MD, Scicchitano R. Role of tachykinis in bronchial hyperresponsiveness. Clin Exp Pharmacol Physiol 1997;24(3):273–280.
  • Kraneveld AD, Folkerts G, Van Oosterhout AJ, Nijkamp FP. Airway hyperresponsivenes: first eosinophils and then neuropeptides. Int J Immunopharmacol 1997;19(9):517–527.
  • Matsumoto K, Hosoya T, Tashima K, Namiki T, Murayama T, Horie S. Distribution of transient receptor potential vanilloid 1 channel-expressing nerve fibers in mouse rectal and colonic enteric nervous system: relationship to peptidergic and nitrergic neurons. Neuroscience 2011;172:518–534.
  • Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y, Eguchi N, Urade Y, Yoshida N, Kimura K, Mizoguchi A, Honda Y, Nagai H, Narumiya S. Prostaglandin D2 as a mediator of allergic asthma. Science 2000;287(5460):2013–2017.
  • Cruz-Orengo L, Dhaka A, Heuermann RJ, Young TJ, Montana MC, Cavanaugh EJ, Kim D, Story GM. Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol Pain 2008;4(30):1–9.
  • Materazzi S, Nassini R, Andre E, Campi B, Amadesi S, Trevisani M, Bunnett NW, Patacchini R, Geppetti P. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 2008;105(33):12045–12050.
  • Freund-Michel V, Frossard N. The nerve growth factor and its receptor in airway inflammatory diseases. Pharmacol Ther 2008;117(1):52–76.
  • El-Hashim AZ, Jaffal SM. Nerve growth factor enharices cough and airway obstruction via TrkA receptor and TRPV1 dependent mechanisms. Thorax 2009;64(9):791–797.
  • Hua J, Yin Y, Peng L, Du L, Geng F, Zhu L. Acute effects of black carbon and PM2.5 on children asthma admissions: a time-series study in a Chinese city. Sci Total Environ 2014;481:433–438.
  • Lee SL, Wong WH, Lau YL. Association between air pollution and asthma admission among children in Hong Kong. Clin Exp Allergy 2006;36:1138–1146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.