326
Views
5
CrossRef citations to date
0
Altmetric
Genetic Determinants

NAT1 genetic variation increases asthma risk in children with secondhand smoke exposure

, MD, , PhD, , PhD, , MS, , PhD, , MD, MS, , MD, MS, , PhD, , MD, PhD & , PhD show all
Pages 284-292 | Received 18 Jul 2019, Accepted 14 Nov 2019, Published online: 06 Dec 2019

References

  • Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. The health consequences of involuntary exposure to tobacco smoke: a report of the surgeon general. Atlanta (GA): Centers for Disease Control and Prevention; 2006.
  • Moritsugu KP. The 2006 report of the surgeon general: the health consequences of involuntary exposure to tobacco smoke. Am J Prev Med. 2007;32(6):542–543. doi:10.1016/j.amepre.2007.02.026.
  • NTP (National Toxicology Program). Report on carcinogens. 13th ed. Research Triangle Park (NC): Department of Health and Human Services; 2014.
  • ACS. Secondhand smoke and children fact sheet. Atlanta (GA): American Cancer Society; 2006.
  • Schuster MA, Franke T, Pham CB. Smoking patterns of household members and visitors in homes with children in the United States. Arch Pediatr Adolesc Med. 2002;156(11):1094–1100.
  • Benowitz NL, Hukkanen J, Jacob P. 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;(192):29–60.
  • Benowitz NL, Jacob P. 3rd. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther. 1994;56(5):483–493.
  • Benowitz NL, Jacob P. 3rd Individual differences in nicotine kinetics and metabolism in humans. NIDA Res Monogr. 1997;173:48–64.
  • Benowitz NL, Perez-Stable EJ, Herrera B, Jacob P. 3rd. Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans. J Natl Cancer Inst. 2002;94(2):108–115.
  • Perez-Stable EJ, Herrera B, Jacob P, 3rd, Benowitz NL. Nicotine metabolism and intake in black and white smokers. JAMA. 1998;280(2):152–156.
  • Mwenifumbo JC, Tyndale RF. Molecular genetics of nicotine metabolism. Handb Exp Pharmacol. 2009;(192):235–259.
  • LeMasters GK, Khurana Hershey GK, Sivaprasad U, Martin LJ, Pilipenko V, Ericksen MB, Burkle JW, Lindsey MA, Bernstein DI, Lockey JE, et al. N-acetyltransferase 1 polymorphism increases cotinine levels in Caucasian children exposed to secondhand smoke: the CCAAPS birth cohort. Pharmacogenomics J. 2015;15(2):189–195. PubMed PMID: 25156213; doi:10.1038/tpj.2014.44.
  • Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev. 2008;40(3):479–510.. doi:10.1080/03602530802186603.
  • Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US, Nangju NA, Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000;9(1):29–42.
  • Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res. 2002;506-507:65–77.
  • Khlifi R, Messaoud O, Rebai A, Hamza-Chaffai A. Polymorphisms in the human cytochrome P450 and arylamine N-acetyltransferase: susceptibility to head and neck cancers. Biomed Res Int. 2013;2013:1. doi:10.1155/2013/582768.
  • Briggs FBS, Acuna B, Shen L, Ramsay P, Quach H, Bernstein A, Bellesis KH, Kockum IS, Hedström AK, Alfredsson L, et al. Smoking and risk of multiple sclerosis: evidence of modification by NAT1 variants. Epidemiology. 2014;25(4):605–614. doi:10.1097/EDE.0000000000000089.
  • Sorensen M, Autrup H, Olsen A, Tjonneland A, Overvad K, Raaschou-Nielsen O. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer Lett. 2008;266(2):186–193. doi:10.1016/j.canlet.2008.02.046.
  • McKay JD, Hashibe M, Hung RJ, Wakefield J, Gaborieau V, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, et al. Sequence variants of NAT1 and NAT2 and other xenometabolic genes and risk of lung and aerodigestive tract cancers in Central Europe. Cancer Epidemiol Biomarkers Prev. 2008;17(1):141–147. doi:10.1158/1055-9965.EPI-07-0553.
  • LeMasters GK, Wilson K, Levin L, Biagini J, Ryan P, Lockey JE, Stanforth S, Maier S, Yang J, Burkle J, et al. High prevalence of aeroallergen sensitization among infants of atopic parents. J Pediatr. 2006;149(4):505–511.
  • Biagini Myers JM, Khurana Hershey GK, Deka R, Burkle JW, Levin LS, Bernstein DI, Villareal M, Lockey JE, Reponen T, Gareri J, et al. Asking the right questions to ascertain early childhood secondhand smoke exposures. J Pediatr. 2012;160(6):1050–1051. doi: S0022-3476(12)00243-0 [pii] doi:10.1016/j.jpeds.2012.02.040.
  • Reponen T, Vesper S, Levin L, Johansson E, Ryan P, Burkle J, Grinshpun SA, Zheng S, Bernstein DI, Lockey J, et al. High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age. Ann Allergy Asthma Immunol. 2011;107(2):120–126. doi:10.1016/j.anai.2011.04.018.
  • National Asthma Education and Prevention Program (NAEPP) NHLBI. expert panel report 3: guidelines for the diagnosis and management of asthma NIH Publication No. 07-4051. Bethesda, MD: National Heart, Lung and Blood Institute, 2007.
  • Narayanaswarmy CR, Ragahavarao D. Principal component analysis of large dispersion matrices. J Royal Stat Soc. 1991;40(2):309–316.
  • Wikman H, Piirilä P, Rosenberg C, Luukkonen R, Kääriä K, Nordman H, Norppa H, Vainio H, Hirvonen A. N-Acetyltransferase genotypes as modifiers of diisocyanate exposure-associated asthma risk. Pharmacogenetics. 2002;12(3):227–233.
  • Yucesoy B, Kissling GE, Johnson VJ, Lummus ZL, Gautrin D, Cartier A, Boulet L-P, Sastre J, Quirce S, Tarlo SM, et al. N-acetyltransferase 2 genotypes are associated with diisocyanate-induced asthma. J Occup Environ Med. 2015;57(12):1331–1336. PubMed PMID: 26641831; doi:10.1097/JOM.0000000000000561.
  • Agency USEP. Health and environmental effects profile for methyl isocyanate. Cincinnati (OH): US Environmental Protection Agency; 1986.
  • Kim J-M, Park B-L, Park S-M, Lee S-H, Kim M-O, Jung S, Lee EH, Uh S-T, Park JS, Choi J-S, et al. Association analysis of N-acetyl transferase-2 polymorphisms with aspirin intolerance among asthmatics. Pharmacogenomics. 2010;11(7):951–958. doi:10.2217/pgs.10.65.
  • Frieri M. Asthma concepts in the new millennium: update in asthma pathophysiology. Allergy Asthma Proc. 2005;26(2):83–88.
  • Bai TR, Knight DA. Structural changes in the airways in asthma: observations and consequences. Clin Sci. 2005;108(6):463–477. doi:10.1042/cs20040342.
  • Elias JA, Zhu Z, Chupp G, Homer RJ. Airway remodeling in asthma. J Clin Invest. 1999;104(8):1001–1006. doi:10.1172/JCI8124.
  • Huber M, Muller J, Leier I, Jedlitschky G, Ball HA, Moore KP, Taylor GW, Williams R, Keppler D. Metabolism of cysteinyl leukotrienes in monkey and man. Eur J Biochem. 1990;194(1):309–315.
  • Dairou J, Petit E, Ragunathan N, Baeza-Squiban A, Marano F, Dupret J-M, Rodrigues-Lima F. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants. Toxicol Appl Pharmacol. 2009;236(3):366–371. doi:10.1016/j.taap.2009.02.010.
  • Gibson G. Human genetics. GTEx detects genetic effects. Science. 2015;348(6235):640–641. doi:10.1126/science.aab3002.
  • Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(D1):D930–4. PubMed PMID: 22064851; doi:10.1093/nar/gkr917.
  • Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238–1243. PubMed PMID: 24013639 doi:10.1038/ng.2756.
  • Badawi AF, Hirvonen A, Bell DA, Lang NP, Kadlubar FF. Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen-DNA adduct formation in the human urinary bladder. Cancer Res. 1995;55(22):5230–5237.
  • Bell DA, Badawi AF, Lang NP, Ilett KF, Kadlubar FF, Hirvonen A. Polymorphism in the N-acetyltransferase 1 (NAT1) polyadenylation signal: association of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue. Cancer Res. 1995;55(22):5226–5229.
  • Zenser TV, Lakshmi VM, Rustan TD, Doll MA, Deitz AC, Davis BB, Hein DW. Human N-acetylation of benzidine: role of NAT1 and NAT2. Cancer Res. 1996;56(17):3941–3947.
  • Deitz AC, Doll MA, Hein DW. A restriction fragment length polymorphism assay that differentiates human N-acetyltransferase-1 (NAT1) alleles. Anal Biochem. 1997;253(2):219–224. doi:10.1006/abio.1997.2379.
  • Cascorbi I, Roots I, Brockmoller J. Association of NAT1 and NAT2 polymorphisms to urinary bladder cancer: significantly reduced risk in subjects with NAT1*10. Cancer Res. 2001;61(13):5051–5056.
  • Wikman H, Thiel S, Jäger B, Schmezer P, Spiegelhalder B, Edler L, Dienemann H, Kayser K, Schulz V, Drings P, et al. Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility. Pharmacogenetics. 2001;11(2):157–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.