1,854
Views
5
CrossRef citations to date
0
Altmetric
Biomarkers

γδT17/γδTreg cell subsets: a new paradigm for asthma treatment

, MD, , MD, , MD & , MD
Pages 2028-2038 | Received 14 Apr 2021, Accepted 09 Sep 2021, Published online: 26 Oct 2021

References

  • Cheng M, Hu S. Lung-resident γδ T cells and their roles in lung diseases. Immunology. 2017;151(4):375–384. doi:10.1111/imm.12764.
  • Yang LY, Li X, Li WT, Huang JC, Wang ZY, Huang ZZ, Chang LH, Zhang GH. Vγ1+ γδT cells are correlated with increasing expression of eosinophil cationic protein and metalloproteinase-7 in chronic rhinosinusitis with nasal polyps inducing the formation of edema. Allergy Asthma Immunol Res. 2017;9(2):142–151. doi:10.4168/aair.2017.9.2.142.
  • Sun X, Cai Y, Fleming C, Tong Z, Wang Z, Ding C, Qu M, Zhang H-G, Suo J, Yan J, et al. Innate γδT17 cells play a protective role in DSS-induced colitis via recruitment of Gr-1 + CD11b + myeloid suppressor cells. Oncoimmunology. 2017;6(5):e1313369. doi:10.1080/2162402X.2017.1313369.
  • Nakada EM, Shan J, Kinyanjui MW, Fixman ED. Adjuvant-dependent regulation of interleukin-17 expressing γδ T cells and inhibition of Th2 responses in allergic airways disease. Respir Res. 2014;15(1):1–14. doi:10.1186/s12931-014-0090-5.
  • Zhong F, Cui D, Tao H, Du H, Xing C. IL-17A-producing T cells and associated cytokines are involved in the progression of gastric cancer. Oncol Rep. 2015;34(5):2365–2374. doi:10.3892/or.2015.4246.
  • Silva MJ, de Santana MBR, Tosta BR, Espinheira RP, Alcantara-Neves NM, Barreto ML, Figueiredo CA, Costa RDS. Variants in the IL17 pathway genes are associated with atopic asthma and atopy makers in a South American population. Allergy Asthma Clin Immunol. 2019;15:28.
  • Kinyanjui MW, Shan J, Nakada EM, Qureshi ST, Fixman ED. Dose-dependent effects of IL-17 on IL-13-induced airway inflammatory responses and airway hyperresponsiveness. J Immunol. 2013;190(8):3859–3868. doi:10.4049/jimmunol.1200506.
  • Hisako H, Akiko K, Shintaro O, et al. IL-17A/F modulates fibrocyte functions in cooperation with CD40-mediated signaling. Inflammation. 2013;36(4):830–838.
  • Chiba Y, Tanoue G, Suto R, Suto W, Hanazaki M, Katayama H, Sakai H. Interleukin-17A directly acts on bronchial smooth muscle cells and augments the contractility. Pharmacol Rep. 2017;69(3):377–385. doi:10.1016/j.pharep.2016.12.007.
  • Whitehead GS, Kang HS, Thomas SY, Medvedev A, Karcz TP, Izumi G, Nakano K, Makarov SS, Nakano H, Jetten AM, et al. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORgammat inverse agonist. JCI Insight. 2019;4(14):5. doi:10.1172/jci.insight.125528.
  • Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W, et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40(5):785–800. doi:10.1016/j.immuni.2014.03.013.
  • Papotto PH, Ribot JC, Silva-Santos B. IL-17+ γδ T cells as kick-starters of inflammation. Nat Immunol. 2017;18(6):604–611. doi:10.1038/ni.3726.
  • Liao Y, Wu Q, Kelly BC, Zhang F, Tang Y-Y, Wang Q, Ren H, Hao Y, Yang M, Cohen J, et al. Effectiveness of a text-messaging-based smoking cessation intervention ("Happy Quit") for smoking cessation in China: A randomized controlled trial. PLoS Med. 2018;15(12):e1002713. doi:10.1371/journal.pmed.1002713.
  • Kang N, Tang L, Li X, Wu D, Li W, Chen X, Cui L, Ba D, He W. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human. Immunology Letters. 2009; 125(2):105–113.
  • Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2(5):336–345. doi:10.1038/nri797.
  • Lu H, Li DJ, Jin LP. γδT cells and related diseases. Am J Reprod Immunol. 2016;75(6):609–618. doi:10.1111/aji.12495.
  • Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009;31(2):321–330. doi:10.1016/j.immuni.2009.06.020.
  • Muschaweckh A, Petermann F, Korn T. IL-1β and IL-23 promote extrathymic commitment of CD27(+)CD122(-) γδ T cells to γδT17 cells. JI. 2017;199(8):2668–2679. doi:10.4049/jimmunol.1700287.
  • Huang H, Saravia J, You D, Shaw AJ, Cormier SA. Impaired gamma delta T cell-derived IL-17A and inflammasome activation during early respiratory syncytial virus infection in infants. Immunol Cell Biol. 2015;93(2):126–135. doi:10.1038/icb.2014.79.
  • Zuany-Amorim C, Ruffié C, Hailé S, Vargaftig BB, Pereira P, Pretolani M. Requirement for gammadelta T cells in allergic airway inflammation. Science. 1998;280(5367):1265–1267.
  • Newcomb DC, Boswell MG, Sherrill TP, Polosukhin VV, Boyd KL, Goleniewska K, Brody SL, Kolls JK, Adler KB, Peebles RS, et al. IL-17A induces signal transducers and activators of transcription-6-independent airway mucous cell metaplasia. Am J Respir Cell Mol Biol. 2013;48(6):711–716. doi:10.1165/rcmb.2013-0017OC.
  • Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O’Brien RL, Born WK. The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J Immunol. 2009;183(2):849–855. doi:10.4049/jimmunol.0804104.
  • Roark CL, Simonian PL, Fontenot AP, Born WK, O’Brien RL. gammadelta T cells: an important source of IL-17. Curr Opin Immunol. 2008;20(3):353–357. doi:10.1016/j.coi.2008.03.006.
  • Hahn Y-S, Taube C, Jin N, Takeda K, Park J-W, Wands JM, Aydintug MK, Roark CL, Lahn M, O’Brien RL, et al. V gamma 4+ gamma delta T cells regulate airway hyperreactivity to methacholine in ovalbumin-sensitized and challenged mice. J Immunol. 2003;171(6):3170–3178. doi:10.4049/jimmunol.171.6.3170.
  • Murdoch JR, Gregory LG, Lloyd CM. γδT cells regulate chronic airway inflammation and development of airway remodelling. Clin Exp Allergy. 2014;44(11):1386–1398. doi:10.1111/cea.12395.
  • Korematsu S, Tanaka Y, Nagakura T, Minato N, Izumi T. Human gammadelta T cells modulate the mite allergen-specific T-helper type 2-skewed immunity. Clin Exp Allergy. 2007;37(11):1681–1687. doi:10.1111/j.1365-2222.2007.02826.x.
  • Zheng R, Yang Q. The role of the γ δ T cell in allergic diseases. J Immunol Res. 2014;2014:963484. doi:10.1155/2014/963484.
  • Urboniene D, Babusyte A, Lötvall J, Sakalauskas R, Sitkauskiene B. Distribution of γδ and other T-lymphocyte subsets in patients with chronic obstructive pulmonary disease and asthma. Respir Med. 2013;107(3):413–423. doi:10.1016/j.rmed.2012.11.012.
  • Das S, Khader S. Yin and yang of interleukin-17 in host immunity to infection. F1000Res. 2017;6:741. doi:10.12688/f1000research.10862.1.
  • Muñoz-Ruiz M, Sumaria N, Pennington DJ, Silva-Santos B. Thymic determinants of γδ T cell differentiation. Trends Immunol. 2017;38(5):336–344. doi:10.1016/j.it.2017.01.007.
  • Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington DJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol. 2009;10(4):427–436. doi:10.1038/ni.1717.
  • Haas JD, González FHM, Schmitz S, Chennupati V, Föhse L, Kremmer E, Förster R, Prinz I. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Eur J Immunol. 2009;39(12):3488–3497. doi:10.1002/eji.200939922.
  • Jensen KD, Chien YH. Thymic maturation determines gammadelta T cell function, but not their antigen specificities. Curr Opin Immunol. 2009;21(2):140–145. doi:10.1016/j.coi.2009.02.008.
  • O’brien RL, Born WK. gammadelta T cell subsets: a link between TCR and function? Semin Immunol. 2010;22(4):193–198. doi:10.1016/j.smim.2010.03.006.
  • Romani L, Fallarino F, De Luca A, Montagnoli C, D’Angelo C, Zelante T, Vacca C, Bistoni F, Fioretti MC, Grohmann U, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature. 2008;451(7175):211–215. doi:10.1038/nature06471.
  • Heilig JS, Tonegawa S. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature. 1986;322(6082):836–840. doi:10.1038/322836a0.
  • Narayan K, Sylvia KE, Malhotra N, Yin CC, Martens G, Vallerskog T, Kornfeld H, Xiong N, Cohen NR, Brenner MB, et al. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat Immunol. 2012;13(5):511–518. doi:10.1038/ni.2247.
  • Malhotra N, Narayan K, Cho OH, Sylvia KE, Yin C, Melichar H, Rashighi M, Lefebvre V, Harris JE, Berg LJ, et al. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity. 2013;38(4):681–693. doi:10.1016/j.immuni.2013.01.010.
  • Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, Riethmacher D, Si-Tahar M, Di Santo JP, Eberl G, et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t + T cells. J Exp Med. 2008;205(6):1381–1393. doi:10.1084/jem.20080034.
  • Schmolka N, Serre K, Grosso AR, Rei M, Pennington DJ, Gomes AQ, Silva-Santos B. Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory γδ T cell subsets. Nat Immunol. 2013;14(10):1093–1100. doi:10.1038/ni.2702.
  • Barros-Martins J, Schmolka N, Fontinha D, et al. Effector γδ T cell differentiation relies on master but not auxiliary Th cell transcription factors. J Immunol (Baltimore, Md.: 1950). 2016;196(9):3642–3652.
  • Schmolka N, Wencker M, Hayday AC, Silva-Santos B. Epigenetic and transcriptional regulation of γδ T cell differentiation: programming cells for responses in time and space. Semin Immunol. 2015;27(1):19–25. doi:10.1016/j.smim.2015.01.001.
  • Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–341. doi:10.1016/j.immuni.2009.08.001.
  • Ribot JC, Chaves-Ferreira M, d’Orey F, Wencker M, Gonçalves-Sousa N, Decalf J, Simas JP, Hayday AC, Silva-Santos B. Cutting edge: adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-γ- or IL-17-producing γδ T cells upon infection. JI. 2010;185(11):6421–6425. doi:10.4049/jimmunol.1002283.
  • Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun. 2017;8(1):7–13839. doi:10.1038/ncomms15265.
  • Reynolds JM, Martinez GJ, Chung Y, Dong C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A. 2012;109(32):13064–13069. doi:10.1073/pnas.1120585109.
  • Sheridan BS, Romagnoli PA, Pham Q-M, Fu H-H, Alonzo F, Schubert W-D, Freitag NE, Lefrançois L. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity. 2013;39(1):184–195. doi:10.1016/j.immuni.2013.06.015.
  • Rei M, Gonçalves-Sousa N, Lança T, Thompson RG, Mensurado S, Balkwill FR, Kulbe H, Pennington DJ, Silva-Santos B. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci U S A. 2014;111(34):E3562–70. doi:10.1073/pnas.1403424111.
  • Wencker M, Turchinovich G, Di Marco Barros R, Deban L, Jandke A, Cope A, Hayday AC. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat Immunol. 2014;15(1):80–87. doi:10.1038/ni.2773.
  • Zeng X, Wei Y-L, Huang J, Newell EW, Yu H, Kidd BA, Kuhns MS, Waters RW, Davis MM, Weaver CT, et al. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity. 2012;37(3):524–534. doi:10.1016/j.immuni.2012.06.011.
  • Bonneville M, O’brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–478.
  • Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479–489. doi:10.1038/nri2800.
  • O’brien RL, Roark CL, Born WK. IL-17-producing gammadelta T cells. Eur J Immunol. 2009;39(3):662–666. doi:10.1002/eji.200839120.
  • Lalor SJ, Dungan LS, Sutton CE, Basdeo SA, Fletcher JM, Mills KHG. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. JI. 2011;186(10):5738–5748. doi:10.4049/jimmunol.1003597.
  • Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008;38(10):2636–2649. doi:10.1002/eji.200838535.
  • Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, Oshiro K, Okamoto Y, Watanabe H, Kawakami K, et al. IL-17A produced by gammadelta T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol. 2008;181(5):3456–3463. doi:10.4049/jimmunol.181.5.3456.
  • Lockhart E, Green AM, Flynn J. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol. 2006;177(7):4662–4669. doi:10.4049/jimmunol.177.7.4662.
  • Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol. 2007;178(7):4466–4472. doi:10.4049/jimmunol.178.7.4466.
  • Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest. 2010;120(5):1762–1773. doi:10.1172/JCI40891.
  • Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity. 2009;31(2):184–196. doi:10.1016/j.immuni.2009.08.006.
  • Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F, Casares N, et al. Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med. 2011;208(3):491–503. doi:10.1084/jem.20100269.
  • Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. 2011;12(3):255–263. doi:10.1038/ni.1993.
  • Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M, et al. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity. 2010;33(3):351–363. doi:10.1016/j.immuni.2010.08.013.
  • Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946–950. doi:10.1038/nm.1999.
  • Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–68.
  • van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LAB, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smits-van der Graaf CAA, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365(1):54–61. doi:10.1056/NEJMoa1100102.
  • O’brien RL, Born WK. Two functionally distinct subsets of IL-17 producing γδ T cells. Immunol Rev. 2020;298(1):10–24. doi:10.1111/imr.12905.
  • Caccamo N, La Mendola C, Orlando V, Meraviglia S, Todaro M, Stassi G, Sireci G, Fournié JJ, Dieli F. Differentiation, phenotype, and function of interleukin-17-producing human Vγ9Vδ2 T cells. Blood. 2011;118(1):129–138. doi:10.1182/blood-2011-01-331298.
  • Moens E, Brouwer M, Dimova T, Goldman M, Willems F, Vermijlen D. IL-23R and TCR signaling drives the generation of neonatal Vgamma9Vdelta2 T cells expressing high levels of cytotoxic mediators and producing IFN-gamma and IL-17. J Leukoc Biol. 2011;89(5):743–752. doi:10.1189/jlb.0910501.
  • DeBarros A, Chaves-Ferreira M, d’Orey F, Ribot JC, Silva-Santos B. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human γδ peripheral blood lymphocytes. Eur J Immunol. 2011;41(1):195–201. doi:10.1002/eji.201040905.
  • Deknuydt F, Scotet E, Bonneville M. Modulation of inflammation through IL-17 production by gammadelta T cells: mandatory in the mouse, dispensable in humans? Immunol Lett. 2009;127(1):8–12. doi:10.1016/j.imlet.2009.08.003.
  • Ness-Schwickerath KJ, Jin C, Morita CT. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vgamma2Vdelta2 T cells. JI. 2010;184(12):7268–7280. doi:10.4049/jimmunol.1000600.
  • Peng MY, Wang ZH, Yao CY, Jiang LN, Jin QL, Wang J, Li BQ. Interleukin 17-producing gamma delta T cells increased in patients with active pulmonary tuberculosis. Cell Mol Immunol. 2008;5(3):203–208. doi:10.1038/cmi.2008.25.
  • Jensen KDC, Su X, Shin S, Li L, Youssef S, Yamasaki S, Steinman L, Saito T, Locksley RM, Davis MM, et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity. 2008;29(1):90–100. doi:10.1016/j.immuni.2008.04.022.
  • Turchinovich G, Hayday AC. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells. Immunity. 2011;35(1):59–68. doi:10.1016/j.immuni.2011.04.018.
  • Shibata K, Yamada H, Nakamura R, Sun X, Itsumi M, Yoshikai Y. Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers. J Immunol. 2008;181(9):5940–5947. doi:10.4049/jimmunol.181.9.5940.
  • Simonian PL, Roark CL, Wehrmann F, Lanham AM, Born WK, O’Brien RL, Fontenot AP. IL-17A-expressing T cells are essential for bacterial clearance in a murine model of hypersensitivity pneumonitis. J Immunol. 2009;182(10):6540–6549. doi:10.4049/jimmunol.0900013.
  • Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128(1):415–426. doi:10.1172/JCI95837.
  • Bekiaris V, Šedý JR, Macauley MG, Rhode-Kurnow A, Ware CF. The inhibitory receptor BTLA controls γδ T cell homeostasis and inflammatory responses. Immunity. 2013;39(6):1082–1094. doi:10.1016/j.immuni.2013.10.017.
  • Imai Y, Ayithan N, Wu X, et al. Cutting edge: PD-1 regulates imiquimod-induced Psoriasiform dermatitis through inhibition of IL-17A expression by innate γδ-low T cells. J Immunol (Baltimore, Md.: 1950). 2015;195(2):421–425.
  • Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol (Baltimore, Md.: 1950). 1995;155(3):1151–1164.
  • Kondĕlková K, Vokurková D, Krejsek J, Borská L, Fiala Z, Ctirad A. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove). 2010;53(2):73–77. doi:10.14712/18059694.2016.63.
  • Zheng SG, Wang J, Wang P, et al. IL-2 is essential for TGF-beta to convert naive CD4 + CD25- cells to CD25 + Foxp3+ regulatory T cells and for expansion of these cells. J Immunol (Baltimore, Md.: 1950). 2007;178(4):2018–2027.
  • Zhang S-Y, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–1527.
  • Owczarczyk-Saczonek A, Czerwińska J, Placek W. The role of regulatory T cells and anti-inflammatory cytokines in psoriasis. Acta Dermatovenerol Alp Pannonica Adriat. 2018;27(1):17–23.
  • Kondelková K, Vokurková D, Krejsek J, Borská L, Fiala Z, Hamáková K, Andrýs C. The number of immunoregulatory T cells is increased in patients with psoriasis after Goeckerman therapy. Acta Medica (Hradec Kralove). 2012;55(2):91–95. doi:10.14712/18059694.2015.62.
  • Amin HZ, Sasaki N, Hirata KI. Regulatory T cell immunity in atherosclerosis. Acta Med Indones. 2017;49(1):63–68.
  • Casetti R, Agrati C, Wallace M, Sacchi A, Martini F, Martino A, Rinaldi A, Malkovsky M. Cutting edge: TGF-beta1 and IL-15 induce FOXP3+ gammadelta regulatory T cells in the presence of antigen stimulation. J Immunol. 2009;183(6):3574–3577. doi:10.4049/jimmunol.0901334.
  • Hua F, Kang N, Gao Y-A, Cui L-X, Ba D-N, He W. Potential regulatory role of in vitro-expanded Vδ1 T cells from human peripheral blood. Immunol Res. 2013;56(1):172–180. doi:10.1007/s12026-013-8390-2.
  • Ye J, Ma C, Wang F, Hsueh EC, Toth K, Huang Y, Mo W, Liu S, Han B, Varvares MA, et al. Specific recruitment of γδ regulatory T cells in human breast cancer. Cancer Res. 2013;73(20):6137–6148. doi:10.1158/0008-5472.CAN-13-0348.
  • Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, Shao X, Wu D, Ye J, Zhang T, et al. Tumor-infiltrating CD39 + γδTregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology. 2017;6(2):e1277305. doi:10.1080/2162402X.2016.1277305.
  • Li X, Kang N, Zhang X, Dong X, Wei W, Cui L, Ba D, He W. Generation of human regulatory gammadelta T cells by TCR gammadelta stimulation in the presence of TGF-beta and their involvement in the pathogenesis of systemic lupus erythematosus. JI. 2011;186(12):6693–6700. doi:10.4049/jimmunol.1002776.
  • Wu Q, Gupta PK, Suzuki H, Wagner SR, Zhang C, W Cummings O, Fan L, Kaplan MH, Wilkes DS, Shilling RA, et al. CD4 T cells but not Th17 cells are required for mouse lung transplant obliterative bronchiolitis. Am J Transplant. 2015;15(7):1793–1804. doi:10.1111/ajt.13215.
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi:10.1038/nature07205.
  • Churov A, Zhulai G. Targeting adenosine and regulatory T cells in cancer immunotherapy. Hum Immunol. 2021;82(4):270–278. doi:10.1016/j.humimm.2020.12.005.
  • Shi L, Feng M, Du S, Wei X, Song H, Yixin X, Song J, Wenxian G. Adenosine generated by regulatory T cells induces CD8+ T cell exhaustion in gastric cancer through A2aR pathway. Biomed Res Int. 2019;2019:4093214. doi:10.1155/2019/4093214.
  • Hu G, Cheng P, Pan J, Wang S, Ding Q, Jiang Z, Cheng L, Shao X, Huang L, Huang J, et al. An IL6-adenosine positive feedback loop between CD73+ γδTregs and CAFs promotes tumor progression in human breast cancer. Cancer Immunol Res. 2020;8(10):1273–1286. doi:10.1158/2326-6066.CIR-19-0923.
  • De Leve S, Wirsdörfer F, Jendrossek V. Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapy. Front Immunol. 2019;10:698. doi:10.3389/fimmu.2019.00698.
  • Gregson AL, Hoji A, Saggar R, Ross DJ, Kubak BM, Jamieson BD, Weigt SS, Lynch JP, Ardehali A, Belperio JA, et al. Bronchoalveolar immunologic profile of acute human lung transplant allograft rejection. Transplantation. 2008;85(7):1056–1059. doi:10.1097/TP.0b013e318169bd85.
  • Bergantini L, d’Alessandro M, Cameli P, Bono C, Perruzza M, Biagini M, Pini L, Bigliazzi C, Sestini P, Dotta F, et al. Regulatory T cell monitoring in severe eosinophilic asthma patients treated with mepolizumab. Scand J Immunol. 2021;94(1):e13031. doi:10.1111/sji.13031.
  • Bergantini L, Cameli P, d’Alessandro M, Vietri L, Perruzza M, Pieroni M, Lanzarone N, Refini RM, Fossi A, Bargagli E, et al. Regulatory T cells in severe persistent asthma in the era of monoclonal antibodies target therapies. Inflammation. 2020;43(2):393–400. doi:10.1007/s10753-019-01157-0.
  • Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–612. doi:10.1016/j.immuni.2015.04.005.
  • Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, Mauri C. CD19 + CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med. 2013;5(173):173ra23. doi:10.1126/scitranslmed.3005407.
  • Diller ML, Kudchadkar RR, Delman KA, Lawson DH, Ford ML. Balancing inflammation: the link between Th17 and regulatory T cells. Mediators Inflamm. 2016;2016:6309219. doi:10.1155/2016/6309219.
  • Bargagli E, Madioni C, Bianchi N, Refini RM, Cappelli R, Rottoli P. Serum analysis of coagulation factors in IPF and NSIP. Inflammation. 2014;37(1):10–16. doi:10.1007/s10753-013-9706-z.
  • Lee GR. The balance of Th17 versus treg cells in autoimmunity. IJMS. 2018;19(3):730. doi:10.3390/ijms19030730.
  • Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, Paulos CM. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458–469. doi:10.1038/s41423-018-0004-4.
  • Mamessier E, Lorec A-M, Thomas P, Badier M, Magnan A, Reynaud-Gaubert M. T regulatory cells in stable posttransplant bronchiolitis obliterans syndrome. Transplantation. 2007;84(7):908–916. doi:10.1097/01.tp.0000281408.20686.cb.
  • Bergantini L, d’Alessandro M, De Vita E, Perillo F, Fossi A, Luzzi L, Paladini P, Perrone A, Rottoli P, Sestini P, et al. Regulatory and effector cell disequilibrium in patients with acute cellular rejection and chronic lung allograft dysfunction after lung transplantation: comparison of peripheral and alveolar distribution. Cells. 2021;10(4):780. doi:10.3390/cells10040780.
  • Nakagiri T, Inoue M, Minami M, Shintani Y, Okumura M. Immunology mini-review: the basics of T(H)17 and interleukin-6 in transplantation. Transplant Proc. 2012;44(4):1035–1040. doi:10.1016/j.transproceed.2011.12.032.
  • Neujahr DC, Larsen CP. Regulatory T cells in lung transplantation-an emerging concept. Semin Immunopathol. 2011;33(2):117–127. doi:10.1007/s00281-011-0253-0.
  • Ming M, Luo Z, Lv S, Li C. Inhalation of inactivated‑Mycobacterium phlei prevents asthma‑mediated airway hyperresponsiveness and airway eosinophilia in mice by reducing IL‑5 and IL‑13 levels. Mol Med Rep. 2016;14(6):5343–5349. doi:10.3892/mmr.2016.5865.
  • Yang X, Zhang J-H, Deng W-S, Li C-Q. Imbalance of γδT17/γδTreg cells in the pathogenesis of allergic asthma induced by ovalbumin. Braz J Med Biol Res. 2018;51(9):e7127. doi:10.1590/1414-431X20187127.
  • Hahn Y-S, Taube C, Jin N, Sharp L, Wands JM, Aydintug MK, Lahn M, Huber SA, O’Brien RL, Gelfand EW, et al. Different potentials of gamma delta T cell subsets in regulating airway responsiveness: V gamma 1+ cells, but not V gamma 4+ cells, promote airway hyperreactivity, Th2 cytokines, and airway inflammation. J Immunol. 2004;172(5):2894–2902. doi:10.4049/jimmunol.172.5.2894.
  • Chesné J, Braza F, Mahay G, Brouard S, Aronica M, Magnan A. IL-17 in severe asthma. Where do we stand? Am J Respir Crit Care Med. 2014;190(10):1094–1101. doi:10.1164/rccm.201405-0859PP.
  • Choy DF, Hart KM, Borthwick LA, Shikotra A, Nagarkar DR, Siddiqui S, Jia G, Ohri CM, Doran E, Vannella KM, et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med. 2015;7(301):301ra129. doi:10.1126/scitranslmed.aab3142.
  • Glanville N, Message SD, Walton RP, Pearson RM, Parker HL, Laza-Stanca V, Mallia P, Kebadze T, Contoli M, Kon OM, et al. γδT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol. 2013;6(6):1091–1100. doi:10.1038/mi.2013.3.
  • Huang M-T, Dai Y-S, Chou Y-B, Juan Y-H, Wang C-C, Chiang B-L. Regulatory T cells negatively regulate neovasculature of airway remodeling via DLL4-Notch signaling. J Immunol. 2009;183(7):4745–4754. doi:10.4049/jimmunol.0804371.
  • Rashedi I, Gómez-Aristizábal A, Wang X-H, Viswanathan S, Keating A. TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated treg induction via notch signaling. Stem Cells. 2017;35(1):265–275. doi:10.1002/stem.2485.
  • Boonpiyathad T, Satitsuksanoa P, Akdis M, Akdis CA. Il-10 producing T and B cells in allergy. Semin Immunol. 2019;44:101326 doi:10.1016/j.smim.2019.101326.
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–189. doi:10.1016/j.immuni.2006.01.001.
  • Hong J-Y, Li S-S, Hu T-Y, Liu Z-Q, Yu D, Yu H-Q, Guan L, Wu G-H, Zeng H-T, Liu Z-G, et al. Frontline science: TLR3 activation inhibits food allergy in mice by inducing IFN-γ+ Foxp3+ regulatory T cells . J Leukoc Biol. 2019;106(6):1201–1209. doi:10.1002/JLB.3HI0918-348RR.
  • Zhao J, Lloyd CM, Noble A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol. 2013;6(2):335–346. doi:10.1038/mi.2012.76.
  • Kang N, Tang L, Li X, Wu D, Li W, Chen X, Cui L, Ba D, He W. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human J. Immunol Lett. 2009;125(2):105–113. doi:10.1016/j.imlet.2009.06.005.