362
Views
3
CrossRef citations to date
0
Altmetric
Articles

Plasma levels of oxysterols 7-ketocholesterol and cholestane-3β, 5α, 6β-triol in patients with allergic asthma

, MScORCID Icon, , PhDORCID Icon, , PhDORCID Icon, , MDORCID Icon, , MDORCID Icon, , MDORCID Icon, , MDORCID Icon & , PhDORCID Icon show all
Pages 288-297 | Received 28 Sep 2021, Accepted 18 Feb 2022, Published online: 07 Mar 2022

References

  • Global Initiative for Asthma, Global strategy for asthma management and prevention. Fontana, USA, 2021. https://ginasthma.org/gina-reports.
  • Backman H, Räisänen P, Hedman L, Stridsman C, Andersson M, Lindberg A, Lundbäck B, Rönmark E. Increased prevalence of allergic asthma from 1996 to 2006 and further to 2016-results from three population surveys. Clin Exp Allergy. 2017;47(11):1426–1435. doi:10.1111/cea.12963.
  • Mathur SK, Viswanathan RK. Relevance of allergy in adult asthma. Curr Allergy Asthma Rep. 2014 May;14(5):437. doi:10.1007/s11882-014-0437-5.
  • Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med. 2021:101026. (published online ahead of print). doi:10.1016/j.mam.2021.101026.
  • Zuo L, Koozechian MS, Chen LL. Characterization of reactive nitrogen species in allergic asthma. Ann Allergy Asthma Immunol. 2014;112(1):18–22. doi:10.1016/j.anai.2013.10.007.
  • Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci Ö. Oxidative stress in asthma: part of the puzzle. Pediatr Allergy Immunol. 2018;29(8):789–800. doi:10.1111/pai.12965.
  • van der Vliet A, Janssen-Heininger YMW, Anathy V. Oxidative stress in chronic lung disease: from mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med. 2018;63:59–69. doi:10.1016/j.mam.2018.08.001.
  • Qu J, Li Y, Zhong W, Gao P, Hu C. Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis. 2017;9(1):E32–E43. doi:10. 21037/jtd.2017.01.05.
  • Jesenak M, Zelieskova M, Babusikova E. Oxidative stress and bronchial asthma in children-causes or consequences? Front Pediatr. 2017;5:162. doi:10.3389/fped.2017.00162.
  • Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy. 2016;71(6):741–757. doi:10.1111/all.12865.
  • Karadogan B, Beyaz S, Gelincik A, Buyukozturk S, Arda N. Evaluation of oxidative stress biomarkers and antioxidant parameters in allergic asthma patients with different level of asthma control. J Asthma. 2021;8:1–15. doi:10.1080/02770903.2020.1870129. Epub ahead of print.
  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–425. doi:10.1016/j.bbrc.2016.10.086.
  • Thomas CE, Aust SD. Free radicals and environmental toxins. Ann Emerg Med. 1986;15(9):1075–1083. doi:10.1016/S0196-0644(86)80132-9.
  • Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng Z-Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843. doi:10.1155/2019/5080843.
  • Nixon M, Andrew R. Oxysterols as therapeutic targets. Br J Pharmacol. 2021;178(16):3085–3088. doi:10.1111/bph.15577.
  • Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, Murray JJ, Pendergraft TB. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol. 2004;113(1):59–65. doi:10.1016/j.jaci.2003.09.008.
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi:10.1016/s0076-6879(78)52032-6.
  • Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. doi:10.1016/0076-6879(90)86134-h.
  • Jiang X, Ory DS, Han X. Characterization of oxysterols by electrospray ionization tandem mass spectrometry after one-step derivatization with dimethylglycine. Rapid Commun Mass Spectrom. 2007;21(2):141–152. doi:10.1002/rcm.2820.
  • Cho YS, Moon HB. The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol Res. 2010;2(3):183–187. doi:10.4168/aair.2010.2.3.183.
  • Fernando Y, Wickramasinghe P, De Silva U, Alahakoon M, Anuradha KW, Handunnetti S. Differences in serum markers of oxidative stress in well controlled and poorly controlled asthma in Sri Lankan children: a pilot study. Allergy Asthma Clin Immunol. 2020;16(1):1–9. doi:10.1186/s13223-020-00463-9.
  • Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci O. Oxidative stress in asthma. World Allergy Organ J. 2011;4(10):151–158. doi:10.1097/WOX.0b013e318232389e.
  • Nadeem A, Chhabra SK, Masood A, Raj HG. Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol. 2003;111(1):72–78. doi:10.1067/mai.2003.17.
  • Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Longev. 2017;2017:6501046. doi:10.1155/2017/6501046.
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10.1155/2014/360438.
  • Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem. 1997;43(7):1209–1214.
  • Khoubnasabjafari M, Ansarin K, Jouyban A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts. 2015;5(3):123–127. doi:10.15171/bi.2015.20.
  • Abboud MM, Al-Rawashde FA, Al-Zayadneh EM. Alterations of serum and saliva oxidative markers in patients with bronchial asthma. J Asthma. 2021;6:1–8. doi:10.1080/02770903.2021.2008426.
  • Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: from physiological tuners to pharmacological opportunities. Br J Pharmacol. 2021;178(16):3089–3103. doi:10.1111/bph.15073.
  • Samadi A, Sabuncuoglu S, Samadi M, Isikhan SY, Chirumbolo S, Peana M, Lay I, Yalcinkaya A, Bjørklund G. A comprehensive review on oxysterols and related diseases. Curr Med Chem. 2021;28(1):110–136. doi:10.2174/0929867327666200316142659.
  • Aksu N, Samadi A, Yalçınkaya A, Çetin T, Eser B, Lay İ, Öziş TN, Öztaş Y, Sabuncuoğlu S. Evaluation of oxysterol levels of patients with silicosis by LC-MS/MS method. Mol Cell Biochem. 2020;467(1–2):117–125. doi:10.1007/s11010-020-03706-w.
  • Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1(1):125–130. doi:10.1016/j.redox.2012.12.001.
  • Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med. 2009;103(9):1245–1256. doi:10.1016/j.rmed.2009.04.014.
  • Samadi A, Gurlek A, Sendur SN, Karahan S, Akbiyik F, Lay I. Oxysterol species: reliable markers of oxidative stress in diabetes mellitus. J Endocrinol Invest. 2019;42(1):7–17. doi:10.1007/s40618-018-0873-5.
  • Leoni V, Caccia C. Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids. 2011;164(6):515–524. doi:10.1016/j.chemphyslip.2011.04.002.
  • Choi C, Finlay DK. Diverse immunoregulatory roles of oxysterols-the oxidized cholesterol metabolites. Metabolites. 2020;10(10):384. doi:10.3390/metabo10100384.
  • Li WJ, Zhao Y, Gao Y, Dong LL, Wu YF, Chen ZH, Shen HH. Lipid metabolism in asthma: immune regulation and potential therapeutic target. Cell Immunol. 2021;364:104341. doi:10.1016/j.cellimm.2021.104341.
  • Rascu A, Arghir OC, Naghi E, Otelea MR. Serum aminotransferases and the severity of asthma. Rev Chim. 2018;69(5):1200–1202. doi:10.37358/RC.18.5.6255.
  • Zhao L, Lei W, Deng C, Wu Z, Sun M, Jin Z, Song Y, Yang Z, Jiang S, Shen M, et al. The roles of liver X receptor α in inflammation and inflammation-associated diseases. J Cell Physiol. 2021;236(7):4807–4828. doi:10.1002/jcp.30204.
  • Heine G, Dahten A, Hilt K, Ernst D, Milovanovic M, Hartmann B, Worm M. Liver X receptors control IgE expression in B cells. J Immunol. 2009;182(9):5276–5282. doi:10.4049/jimmunol.0801804.
  • Zhang J, Wu Z, Yu F, Ye L, Gu W, Tan Y, Wang L, Shi Y. Role of liver-X-receptors in airway remodeling in mice with chronic allergic asthma. Exp Ther Med. 2021;22(3):920. doi:10.3892/etm.2021.10352.
  • Vejux A, Lizard G. Cytotoxic effects of oxysterols associated with human diseases: induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol Aspects Med. 2009;30(3):153–170. doi:10.1016/j.mam.2009.02.006.
  • Sanchez LD, Pontini L, Marinozzi M, Sanchez-Aranguren LC, Reis A, Dias IHK. Cholesterol and oxysterol sulfates: pathophysiological roles and analytical challenges. Br J Pharmacol. 2021;178(16):3327–3341. doi:10.1111/bph.15227. PMID: 32762060.
  • Ghio AJ. Asthma as a disruption in iron homeostasis. Biometals. 2016;29(5):751–779. doi:10.1007/s10534-016-9948-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.