193
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of miRNAs that are effective in the pathogenesis of asthma

, PhDORCID Icon, , PhDORCID Icon, , PhDORCID Icon & , MD
Pages 2145-2152 | Received 20 Mar 2023, Accepted 11 Jun 2023, Published online: 23 Jun 2023

References

  • Subbarao P, Mandhane PJ, Sears MR. Asthma: epidemiology, etiology, and risk factors. CMAJ 2009;181(9):E181–E190. doi:10.1503/cmaj.080612.
  • Cevhertas L, Ogulur I, Maurer DJ, Burla D, Ding M, Jansen K, Koch J, Liu C, Ma S, Mitamura Y, et al. Advances, and recent developments in asthma in 2020. Allergy 2020;75(12):3124–3146. doi:10.1111/all.14607.
  • Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(6):1469–1485. doi:10.1016/j.cell.2021.02.016.
  • Edwards-Salmon SE, Padmanabhan SL, Kuruvilla M, Levy JM. Increasing prevalence of allergic disease and ıts ımpact on current practice. Curr Otorhinolaryngol Rep 2022;10(3):278–284. doi:10.1007/s40136-022-00406-5.
  • Ish P, Malhotra N, Gupta N. GINA 2020: what's new and why? J Asthma 2021;58(10):1273–1277. doi:10.1080/02770903.2020.1788076.
  • Chaplin S. Updated GINA guidance on the management of chronic asthma. Prescriber 2022;33(5):15–16. doi:10.1002/psb.1984.
  • Romanet-Manent S, Charpin D, Magnan A, Lanteaume A, Vervloet D; EGEA Cooperative Group. Allergic vs nonallergic asthma: what makes the difference? Allergy 2002;57(7):607–613. doi:10.1034/j.1398-9995.2002.23504.x.
  • Padem N, Saltoun C. Classification of asthma. Allergy Asthma Proc 2019;40(6):385–388. doi:10.2500/aap.2019.40.4253.
  • Honkamäki J, Hisinger-Mölkänen H, Ilmarinen P, Piirilä P, Tuomisto LE, Andersén H, Huhtala H, Sovijärvi A, Backman H, Lundbäck B, et al. Age- and gender-specific incidence of new asthma diagnosis from childhood to late adulthood. Respir Med 2019;154:56–62. doi:10.1016/j.rmed.2019.06.003.
  • Pakkasela J, Ilmarinen P, Honkamäki J, Tuomisto LE, Andersén H, Piirilä P, Hisinger-Mölkänen H, Sovijärvi A, Backman H, Lundbäck B, et al. Age-specific incidence of allergic and non-allergic asthma. BMC Pulm Med 2020;20(1):9. doi:10.1186/s12890-019-1040-2.
  • Porsbjerg C, Menzies-Gow A. Co-morbidities in severe asthma: clinical impact and management. Respirology 2017;22(4):651–661. doi:10.1111/resp.13026.
  • Tsiakiris G, Neely G, Lind N, Nordin S. Comorbidity in allergic asthma and allergic rhinitis: functional somatic syndromes. Psychol Health Med 2017;22(10):1163–1168. doi:10.1080/13548506.2016.1276606.
  • Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol 2017;140(1):14–23. doi:10.1016/j.jaci.2017.05.011.
  • Alharbi KS, Alenezi SK, Alnasser SM. Microbiome in asthma. In: Gupta G, Oliver BG, Dua K, Singh A, MacLoughlin R. eds. Microbiome in ınflammatory lung diseases. Singapore: Springer; 2022:65–77. doi:10.1007/978-981-16-8957-4_5.
  • Carlsen HK, Haga SL, Olsson D, Behndig AF, Modig L, Meister K, Forsberg B, Olin AC. Birch pollen, air pollution and their interactive effects on airway symptoms and peak expiratory flow in allergic asthma during pollen season – a panel study in Northern and Southern Sweden. Environ Health 2022;21(1):63. doi:10.1186/s12940-022-00871-x.
  • Schoettler N, Rodríguez E, Weidinger S, Ober C. Advances in asthma and allergic disease genetics: ıs bigger always better? J Allergy Clin Immunol 2019;144(6):1495–1506. doi:10.1016/j.jaci.2019.10.023.
  • Baos S, Calzada D, Cremades L, Sastre J, Quiralte J, Florido F, Lahoz C, Cárdaba B. Biomarkers associated with disease severity in allergic and nonallergic asthma. Mol Immunol 2017;82:34–45. doi:10.1016/j.molimm.2016.12.012.
  • Breiteneder H, Peng YQ, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl-Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020;75(12):3039–3068. doi:10.1111/all.14582.
  • Zhang Z, Lai HJ, Roberg KA, Gangnon RE, Evans MD, Anderson EL, Pappas TE, Dasilva DF, Tisler CJ, Salazar LP, et al. Early childhood weight status in relation to asthma development in high-risk children. J Allergy Clin Immunol 2010;126(6):1157–1162. doi:10.1016/j.jaci.2010.09.011.
  • Liu F, Qin HB, Xu B, Zhou H, Zhao DY. Profiling of miRNAs in pediatric asthma: upregulation of miRNA-221 and miRNA-485-3p. Mol Med Rep 2012;6(5):1178–1182. doi:10.3892/mmr.2012.1030.
  • Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Arnould T, Deroanne C, Piette J, Cataldo D, et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One 2011;6(1):e16509. doi:10.1371/journal.pone.0016509.
  • Specjalski K, Jassem E. MicroRNAs: potential biomarkers and targets of therapy in allergic diseases? Arch Immunol Ther Exp (Warsz) 2019;67(4):213–223. doi:10.1007/s00005-019-00547-4.
  • Weidner J, Bartel S, Kilic A, Zissler UM, Renz H, Schwarze J, Schmidt-Weber CB, Maes T, Rebane A, Krauss-Etschmann S, et al. Spotlight on microRNAs in allergy and asthma. Allergy 2021;76(6):1661–1678. doi:10.1111/all.14646.
  • Global strategy for asthma management and prevention. 2022. https://ginasthma.org/. [last accessed 17 August 2022].
  • Sharma S, Yang IV, Schwartz DA. Epigenetic regulation of immune function in asthma. J Allergy Clin Immunol 2022;150(2):259–265. doi:10.1016/j.jaci.2022.06.002.
  • Panganiban RA, Lu Q. A long noncoding RNA “lnc” ed to asthma genetics. Am J Respir Cell Mol Biol 2022;66(3):243–244. doi:10.1165/rcmb.2021-0534ED.
  • Perry MM, Adcock IM, Chung KF. Role of microRNAs in allergic asthma: present and future. Curr Opin Allergy Clin Immunol 2015;15(2):156–162. doi:10.1097/ACI.0000000000000147.
  • Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging roles of non-coding RNAs in childhood asthma. Front Pharmacol 2022;13:856104. doi:10.3389/fphar.2022.856104.
  • Teng ZX, Zhou XC, Xu RT, Zhu FY, Bing X, Guo N, Shi L, Qi WW, Liu CC, Xia M. Tfh exosomes derived from allergic rhinitis promote DC maturation through miR-142-5p/CDK5/STAT3 pathway. J Inflamm Res 2022;15:3187–3205. doi:10.2147/JIR.S365217.
  • Rial MJ, Cañas JA, Rodrigo-Muñoz JM, Valverde-Monge M, Sastre B, Sastre J, Del Pozo V. Changes in serum microRNAs after anti-IL-5 biological treatment of severe asthma. IJMS 2021;22(7):3558. doi:10.3390/ijms22073558.
  • Liu Z, Ai L, Li R, Yang Y, Chen K, He C, Li Y. Analysis of miRNA expression profile in lung tissues of an intermittent hypoxia rat model. Respir Physiol Neurobiol 2021;294:103741. doi:10.1016/j.resp.2021.103741.
  • Harrington EO, Braza J, Shil A, Chichger H. Extracellular vesicles released from p18 overexpressing pulmonary endothelial cells are barrier protective – potential implications for acute respiratory distress syndrome. Pulm Circ 2020;10(3):2045894020951759. doi:10.1177/2045894020951759.
  • Guo S, Chen R, Zhang L, Wu M, Wei Y, Dai W, Jiang Y, Kong X. microRNA-22-3p plays a protective role in a murine asthma model through the inhibition of the NLRP3-caspase-1-IL-1β axis. Exp Physiol 2021;6(8):1829–1838. doi:10.1113/EP089575.
  • Salimi S, Noorbakhsh F, Faghihzadeh S, Ghaffarpour S, Ghazanfari T. Expression of miR-15b-5p, miR-21-5p, and SMAD7 in lung tissue of sulfur mustard-exposed ındividuals with long-term pulmonary complications. Iran J Allergy Asthma Immunol 2019;18(3):332–339. doi:10.18502/ijaai.v18i3.1126.
  • Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, Sauler M, Yan X, Stewart E, Santerian K, et al. A network of sputum microRNAs ıs associated with neutrophilic airway ınflammation in asthma. Am J Respir Crit Care Med 2020;202(1):51–64. doi:10.1164/rccm.201912-2360OC.
  • Liu Y, Zhang G, Chen H, Wang H. Silencing lncRNA DUXAP8 inhibits lung adenocarcinoma progression by targeting miR-26b-5p. Biosci Rep 2021;41(1):BSR20200884. doi:10.1042/BSR20200884.
  • Milger K, Götschke J, Krause L, Nathan P, Alessandrini F, Tufman A, Fischer R, Bartel S, Theis FJ, Behr J, et al. Identification of a plasma miRNA biomarker signature for allergic asthma: a translational approach. Allergy 2017;72(12):1962–1971. doi:10.1111/all.13205.
  • Sun H, Wang T, Zhang W, Dong H, Gu W, Huang L, Yan Y, Zhu C, Chen Z. LncRNATUG1 facilitates Th2 cell differentiation by targeting the miR-29c/B7-H3 axis on macrophages. Front Immunol 2021;12:631450. doi:10.3389/fimmu.2021.631450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.